This documentation is automatically generated by online-judge-tools/verification-helper
#include "data_structure/dual_segment_tree.hpp"
普通のセグメント木+双対セグメント木=遅延セグメント木というイメージ
普通のセグメント木では区間取得 (prod
) が、双対セグメント木では区間作用 (apply
) ができる
基本的に algebra/monoid_f
以下のファイルをインクルードして使う
// 区間更新 1 点取得
#include "algebra/monoid_f/monoid_set.hpp"
#include "data_structure/dual_segment_tree.hpp"
int main() {
vector<int> A;
DualSegmentTree<MonoidSet<int>> seg(A);
}
seg[i]
は seg.get(i)
と同じ#pragma once
#include <vector>
#include <cassert>
template <class MF> struct DualSegmentTree {
public:
using F = typename MF::F;
DualSegmentTree() : DualSegmentTree(0) {}
DualSegmentTree(int n) : DualSegmentTree(std::vector<F>(n, MF::id())) {}
DualSegmentTree(const std::vector<F>& v) : n((int)(v.size())) {
log = 0;
while ((1U << log) < (unsigned int)(n)) log++;
size = 1 << log;
lz = std::vector<F>(size << 1, MF::id());
for (int i = 0; i < n; i++) lz[i + size] = v[i];
}
F operator[](int p) {
assert(0 <= p and p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return lz[p];
}
F get(int p) {
assert(0 <= p and p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return lz[p];
}
void apply(int p, const F& f) {
assert(0 <= p and p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
lz[p] = f;
}
void apply(int l, int r, const F& f) {
assert(0 <= l and l <= r and r <= n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
}
std::vector<F> make_vector() {
std::vector<F> vec(n);
for (int i = 0; i < n; i++) vec[i] = get(i);
return vec;
}
private:
int n, log, size;
std::vector<F> lz;
void all_apply(int k, const F& f) { lz[k] = MF::composition(f, lz[k]); }
void push(int k) {
all_apply(k << 1, lz[k]);
all_apply((k << 1) | 1, lz[k]);
lz[k] = MF::id();
}
};
#line 2 "data_structure/dual_segment_tree.hpp"
#include <vector>
#include <cassert>
template <class MF> struct DualSegmentTree {
public:
using F = typename MF::F;
DualSegmentTree() : DualSegmentTree(0) {}
DualSegmentTree(int n) : DualSegmentTree(std::vector<F>(n, MF::id())) {}
DualSegmentTree(const std::vector<F>& v) : n((int)(v.size())) {
log = 0;
while ((1U << log) < (unsigned int)(n)) log++;
size = 1 << log;
lz = std::vector<F>(size << 1, MF::id());
for (int i = 0; i < n; i++) lz[i + size] = v[i];
}
F operator[](int p) {
assert(0 <= p and p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return lz[p];
}
F get(int p) {
assert(0 <= p and p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
return lz[p];
}
void apply(int p, const F& f) {
assert(0 <= p and p < n);
p += size;
for (int i = log; i >= 1; i--) push(p >> i);
lz[p] = f;
}
void apply(int l, int r, const F& f) {
assert(0 <= l and l <= r and r <= n);
if (l == r) return;
l += size;
r += size;
for (int i = log; i >= 1; i--) {
if (((l >> i) << i) != l) push(l >> i);
if (((r >> i) << i) != r) push((r - 1) >> i);
}
{
int l2 = l, r2 = r;
while (l < r) {
if (l & 1) all_apply(l++, f);
if (r & 1) all_apply(--r, f);
l >>= 1;
r >>= 1;
}
l = l2;
r = r2;
}
}
std::vector<F> make_vector() {
std::vector<F> vec(n);
for (int i = 0; i < n; i++) vec[i] = get(i);
return vec;
}
private:
int n, log, size;
std::vector<F> lz;
void all_apply(int k, const F& f) { lz[k] = MF::composition(f, lz[k]); }
void push(int k) {
all_apply(k << 1, lz[k]);
all_apply((k << 1) | 1, lz[k]);
lz[k] = MF::id();
}
};