This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#include "dp/longest_common_subsequence.hpp"
#pragma once #include <vector> #include <string> template <class T> std::vector<T> longest_common_subsequence(std::vector<T>& a, std::vector<T>& b) { const int n = (int)(a.size()), m = (int)(b.size()); constexpr int e = -1000000000; // -INF std::vector dp(n + 1, std::vector<int>(m + 1, e)); std::vector pd(n + 1, std::vector<int>(m + 1, -1)); // initialize for (int i = 0; i < n + 1; i++) dp[i][0] = 0; for (int j = 0; j < m + 1; j++) dp[0][j] = 0; // dp for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (a[i] == b[j]) { if (dp[i + 1][j + 1] < dp[i][j] + 1) { dp[i + 1][j + 1] = dp[i][j] + 1; pd[i + 1][j + 1] = 0; } } else { if (dp[i + 1][j + 1] < dp[i + 1][j]) { dp[i + 1][j + 1] = dp[i + 1][j]; pd[i + 1][j + 1] = 1; } if (dp[i + 1][j + 1] < dp[i][j + 1]) { dp[i + 1][j + 1] = dp[i][j + 1]; pd[i + 1][j + 1] = 2; } } } } // 復元 std::vector<T> res; res.reserve(dp[n][m]); for (int i = n, j = m; pd[i][j] != -1;) { if (pd[i][j] == 0) { i--, j--; res.push_back(a[i]); } else if (pd[i][j] == 1) { j--; } else { // pd[i][j] == 2 i--; } } std::reverse(res.begin(), res.end()); return res; } std::string longest_common_subsequence(std::string& s, std::string& t) { const int n = (int)(s.size()), m = (int)(t.size()); std::vector<int> a(n), b(m); for (int i = 0; i < n; i++) a[i] = s[i]; for (int j = 0; j < m; j++) b[j] = t[j]; auto lcs = longest_common_subsequence(a, b); const int k = (int)(lcs.size()); std::string res; res.reserve(k); for (int i = 0; i < k; i++) res += lcs[i]; return res; }
#line 2 "dp/longest_common_subsequence.hpp" #include <vector> #include <string> template <class T> std::vector<T> longest_common_subsequence(std::vector<T>& a, std::vector<T>& b) { const int n = (int)(a.size()), m = (int)(b.size()); constexpr int e = -1000000000; // -INF std::vector dp(n + 1, std::vector<int>(m + 1, e)); std::vector pd(n + 1, std::vector<int>(m + 1, -1)); // initialize for (int i = 0; i < n + 1; i++) dp[i][0] = 0; for (int j = 0; j < m + 1; j++) dp[0][j] = 0; // dp for (int i = 0; i < n; i++) { for (int j = 0; j < m; j++) { if (a[i] == b[j]) { if (dp[i + 1][j + 1] < dp[i][j] + 1) { dp[i + 1][j + 1] = dp[i][j] + 1; pd[i + 1][j + 1] = 0; } } else { if (dp[i + 1][j + 1] < dp[i + 1][j]) { dp[i + 1][j + 1] = dp[i + 1][j]; pd[i + 1][j + 1] = 1; } if (dp[i + 1][j + 1] < dp[i][j + 1]) { dp[i + 1][j + 1] = dp[i][j + 1]; pd[i + 1][j + 1] = 2; } } } } // 復元 std::vector<T> res; res.reserve(dp[n][m]); for (int i = n, j = m; pd[i][j] != -1;) { if (pd[i][j] == 0) { i--, j--; res.push_back(a[i]); } else if (pd[i][j] == 1) { j--; } else { // pd[i][j] == 2 i--; } } std::reverse(res.begin(), res.end()); return res; } std::string longest_common_subsequence(std::string& s, std::string& t) { const int n = (int)(s.size()), m = (int)(t.size()); std::vector<int> a(n), b(m); for (int i = 0; i < n; i++) a[i] = s[i]; for (int j = 0; j < m; j++) b[j] = t[j]; auto lcs = longest_common_subsequence(a, b); const int k = (int)(lcs.size()); std::string res; res.reserve(k); for (int i = 0; i < k; i++) res += lcs[i]; return res; }