This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#include "graph/auxiliary_tree.hpp"
Virtual Tree とも呼ばれる
Graph<T> g; // 木 AuxiliaryTree<T> aux(g, root); std::vector<int> vs; // 頂点集合 auto [caux, label] = aux.get(vs);
圧縮後の木は頂点番号が 0 から 圧縮後の木の頂点数 - 1 になっている
0
圧縮後の木の頂点数 - 1
圧縮後の木の頂点 v に対応するもとの木における頂点番号は label[v] でわかる
v
label[v]
圧縮後の木の辺 u - v の重みは、もとの木における u - v パスの辺の重みの総和と等しい
u - v
#pragma once #include "graph/graph_template.hpp" #include "graph/lowest_common_ancestor.hpp" #include <algorithm> template <class T> struct AuxiliaryTree { int n, root; std::vector<int> preorder, rank; std::vector<T> depth; LowestCommonAncestor<T> lca; AuxiliaryTree(Graph<T>& g, const int root = 0) : n((int)(g.size())), root(root), depth(n, T(0)), rank(n), lca(g, root) { // DFS して行きがけ順に頂点を並べる auto dfs = [&](auto f, int cur, int par) -> void { preorder.push_back(cur); for (auto&& e : g[cur]) { if (e.to == par) continue; depth[e.to] = depth[cur] + e.cost; f(f, e.to, cur); } }; dfs(dfs, root, -1); for (int i = 0; i < n; i++) rank[preorder[i]] = i; } // (圧縮後のグラフ, グラフの頂点番号 -> 元のグラフの頂点番号 の対応表) std::pair<Graph<T>, std::vector<int>> get(std::vector<int> vs) { if (vs.empty()) return {}; auto comp = [&](int i, int j) -> bool { return rank[i] < rank[j]; }; std::sort(vs.begin(), vs.end(), comp); for (int i = 0, vslen = (int)(vs.size()); i + 1 < vslen; i++) { vs.emplace_back(lca.lca(vs[i], vs[i + 1])); } std::sort(vs.begin(), vs.end(), comp); vs.erase(unique(vs.begin(), vs.end()), vs.end()); // Auxiliary Tree Graph<T> aux(vs.size(), false); std::vector<int> rs; rs.push_back(0); // i は新しい頂点番号, vs[i] はもとの頂点番号 // vs は Auxiliary Tree の行きがけ順になっているのでループが DFS になっている for (int i = 1; i < (int)(vs.size()); i++) { // LCA まで遡ってから辺を追加する int l = lca.lca(vs[rs.back()], vs[i]); while (vs[rs.back()] != l) rs.pop_back(); aux.add_edge(rs.back(), i, depth[vs[i]] - depth[vs[rs.back()]]); rs.push_back(i); } aux.build(); return {aux, vs}; } };
#line 2 "graph/auxiliary_tree.hpp" #line 2 "graph/graph_template.hpp" #include <vector> #include <cassert> template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {} friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; } friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: {id: cost(from, to) = cost} return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> struct Graph { struct EdgeIterators { public: using Iterator = typename std::vector<Edge<T>>::iterator; EdgeIterators() = default; EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {} Iterator begin() const { return begit; } Iterator end() const { return endit; } size_t size() const { return std::distance(begit, endit); } Edge<T>& operator[](int i) const { return begit[i]; } private: Iterator begit, endit; }; int n, m; bool is_build, is_directed; std::vector<Edge<T>> edges; // CSR (Compressed Row Storage) 形式用 std::vector<int> start; std::vector<Edge<T>> csr_edges; Graph() = default; Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {} // 辺を追加し, その辺が何番目に追加されたかを返す int add_edge(const int from, const int to, const T cost = T(1), int id = -1) { assert(!is_build); assert(0 <= from and from < n); assert(0 <= to and to < n); if (id == -1) id = m; edges.emplace_back(from, to, cost, id); return m++; } // CSR 形式でグラフを構築 void build() { assert(!is_build); for (auto&& e : edges) { start[e.from + 1]++; if (!is_directed) start[e.to + 1]++; } for (int v = 0; v < n; v++) start[v + 1] += start[v]; auto counter = start; csr_edges.resize(start.back() + 1); for (auto&& e : edges) { csr_edges[counter[e.from]++] = e; if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id); } is_build = true; } EdgeIterators operator[](int i) { if (!is_build) build(); return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]); } size_t size() const { return (size_t)(n); } friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) { os << "["; for (int i = 0; i < (int)(g.size()); i++) { os << "["; for (int j = 0; j < (int)(g[i].size()); j++) { os << g[i][j]; if (j + 1 != (int)(g[i].size())) os << ", "; } os << "]"; if (i + 1 != (int)(g.size())) os << ", "; } return os << "]"; } }; #line 2 "graph/lowest_common_ancestor.hpp" #line 4 "graph/lowest_common_ancestor.hpp" #line 6 "graph/lowest_common_ancestor.hpp" template <class T> struct LowestCommonAncestor { int n, lg; std::vector<int> depth; std::vector<std::vector<int>> parent; LowestCommonAncestor(Graph<T>& g, const int root = 0) : n((int)(g.size())), lg(32 - __builtin_clz(n)), depth(n, 0), parent(lg, std::vector<int>(n)) { auto dfs = [&](auto f, int cur, int par) -> void { parent[0][cur] = par; for (auto&& e : g[cur]) { if (e.to == par) continue; depth[e.to] = depth[cur] + 1; f(f, e.to, cur); } }; dfs(dfs, root, -1); for (int k = 0; k + 1 < lg; k++) { for (int v = 0; v < n; v++) { parent[k + 1][v] = parent[k][v] < 0 ? -1 : parent[k][parent[k][v]]; } } } int lca(int u, int v) { assert((int)(depth.size()) == n); if (depth[u] > depth[v]) std::swap(u, v); // depth[u] <= depth[v] for (int k = 0; k < lg; k++) { if ((depth[v] - depth[u]) >> k & 1) v = parent[k][v]; } if (u == v) return u; for (int k = lg - 1; k >= 0; k--) { if (parent[k][u] != parent[k][v]) { u = parent[k][u]; v = parent[k][v]; } } return parent[0][u]; } int level_ancestor(int u, const int d) { assert((int)(depth.size()) == n); if (depth[u] < d) return -1; for (int k = 0; k < lg; k++) { if (d >> k & 1) u = parent[k][u]; } return u; } int distance(const int u, const int v) const { return depth[u] + depth[v] - 2 * depth[lca(u, v)]; } }; #line 5 "graph/auxiliary_tree.hpp" #include <algorithm> template <class T> struct AuxiliaryTree { int n, root; std::vector<int> preorder, rank; std::vector<T> depth; LowestCommonAncestor<T> lca; AuxiliaryTree(Graph<T>& g, const int root = 0) : n((int)(g.size())), root(root), depth(n, T(0)), rank(n), lca(g, root) { // DFS して行きがけ順に頂点を並べる auto dfs = [&](auto f, int cur, int par) -> void { preorder.push_back(cur); for (auto&& e : g[cur]) { if (e.to == par) continue; depth[e.to] = depth[cur] + e.cost; f(f, e.to, cur); } }; dfs(dfs, root, -1); for (int i = 0; i < n; i++) rank[preorder[i]] = i; } // (圧縮後のグラフ, グラフの頂点番号 -> 元のグラフの頂点番号 の対応表) std::pair<Graph<T>, std::vector<int>> get(std::vector<int> vs) { if (vs.empty()) return {}; auto comp = [&](int i, int j) -> bool { return rank[i] < rank[j]; }; std::sort(vs.begin(), vs.end(), comp); for (int i = 0, vslen = (int)(vs.size()); i + 1 < vslen; i++) { vs.emplace_back(lca.lca(vs[i], vs[i + 1])); } std::sort(vs.begin(), vs.end(), comp); vs.erase(unique(vs.begin(), vs.end()), vs.end()); // Auxiliary Tree Graph<T> aux(vs.size(), false); std::vector<int> rs; rs.push_back(0); // i は新しい頂点番号, vs[i] はもとの頂点番号 // vs は Auxiliary Tree の行きがけ順になっているのでループが DFS になっている for (int i = 1; i < (int)(vs.size()); i++) { // LCA まで遡ってから辺を追加する int l = lca.lca(vs[rs.back()], vs[i]); while (vs[rs.back()] != l) rs.pop_back(); aux.add_edge(rs.back(), i, depth[vs[i]] - depth[vs[rs.back()]]); rs.push_back(i); } aux.build(); return {aux, vs}; } };