This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#include "graph/traveling_salesman_problem.hpp"
Graph<T> g; const T INF; auto res = traveling_salesman_problem<T>(g, INF); // res.back()[0] が 答え
初期化
s
dp[0][s] = 0
dp[1 << s][s] = 0
#pragma once #include "graph/graph_template.hpp" template <class T> std::vector<std::vector<T>> traveling_salesman_problem(Graph<T>& g, const T inf) { const int n = (int)(g.size()); const int n2 = 1 << n; std::vector dp(n2, std::vector<T>(n, inf)); dp[0][0] = 0; for (int bit = 0; bit < n2; bit++) { for (int u = 0; u < n; u++) { if (dp[bit][u] == inf) continue; for (auto&& e : g[u]) { if (bit >> e.to & 1) continue; dp[bit | (1 << e.to)][e.to] = std::min(dp[bit | (1 << e.to)][e.to], dp[bit][u] + e.cost); } } } return dp; }
#line 2 "graph/traveling_salesman_problem.hpp" #line 2 "graph/graph_template.hpp" #include <vector> #include <cassert> template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {} friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; } friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: {id: cost(from, to) = cost} return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> struct Graph { struct EdgeIterators { public: using Iterator = typename std::vector<Edge<T>>::iterator; EdgeIterators() = default; EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {} Iterator begin() const { return begit; } Iterator end() const { return endit; } size_t size() const { return std::distance(begit, endit); } Edge<T>& operator[](int i) const { return begit[i]; } private: Iterator begit, endit; }; int n, m; bool is_build, is_directed; std::vector<Edge<T>> edges; // CSR (Compressed Row Storage) 形式用 std::vector<int> start; std::vector<Edge<T>> csr_edges; Graph() = default; Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {} // 辺を追加し, その辺が何番目に追加されたかを返す int add_edge(const int from, const int to, const T cost = T(1), int id = -1) { assert(!is_build); assert(0 <= from and from < n); assert(0 <= to and to < n); if (id == -1) id = m; edges.emplace_back(from, to, cost, id); return m++; } // CSR 形式でグラフを構築 void build() { assert(!is_build); for (auto&& e : edges) { start[e.from + 1]++; if (!is_directed) start[e.to + 1]++; } for (int v = 0; v < n; v++) start[v + 1] += start[v]; auto counter = start; csr_edges.resize(start.back() + 1); for (auto&& e : edges) { csr_edges[counter[e.from]++] = e; if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id); } is_build = true; } EdgeIterators operator[](int i) { if (!is_build) build(); return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]); } size_t size() const { return (size_t)(n); } friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) { os << "["; for (int i = 0; i < (int)(g.size()); i++) { os << "["; for (int j = 0; j < (int)(g[i].size()); j++) { os << g[i][j]; if (j + 1 != (int)(g[i].size())) os << ", "; } os << "]"; if (i + 1 != (int)(g.size())) os << ", "; } return os << "]"; } }; #line 4 "graph/traveling_salesman_problem.hpp" template <class T> std::vector<std::vector<T>> traveling_salesman_problem(Graph<T>& g, const T inf) { const int n = (int)(g.size()); const int n2 = 1 << n; std::vector dp(n2, std::vector<T>(n, inf)); dp[0][0] = 0; for (int bit = 0; bit < n2; bit++) { for (int u = 0; u < n; u++) { if (dp[bit][u] == inf) continue; for (auto&& e : g[u]) { if (bit >> e.to & 1) continue; dp[bit | (1 << e.to)][e.to] = std::min(dp[bit | (1 << e.to)][e.to], dp[bit][u] + e.cost); } } } return dp; }