This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#include "graph/warshall_floyd.hpp"
Graph<T> g; const T INF; auto dist = warshall_floyd(g, INF);
dist[i][j] について
dist[i][j]
INF
-INF
#pragma once #include "graph/graph_template.hpp" template <class T> std::vector<std::vector<T>> warshall_floyd(Graph<T>& g, const T inf) { const int n = (int)(g.size()); std::vector dist(n, std::vector<T>(n, inf)); for (int i = 0; i < n; i++) { dist[i][i] = 0; for (auto&& e : g[i]) { dist[e.from][e.to] = std::min(dist[e.from][e.to], e.cost); } } for (int k = 0; k < n; k++) { for (int i = 0; i < n; i++) { if (dist[i][k] == inf) continue; for (int j = 0; j < n; j++) { if (dist[k][j] == inf) continue; dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]); } } } // 負閉路検出 for (int i = 0; i < n; i++) { if (dist[i][i] < 0) dist[i][i] = -inf; } // 負閉路をもとに小さくできるパスについて調べる for (int k = 0; k < n; k++) { for (int i = 0; i < n; i++) { if (dist[i][k] == inf) continue; for (int j = 0; j < n; j++) { if (dist[k][j] == inf) continue; T nd = dist[i][k] + dist[k][j]; if (dist[i][k] == -inf or dist[k][j] == -inf) nd = -inf; dist[i][j] = std::min(dist[i][j], nd); } } } return dist; }
#line 2 "graph/warshall_floyd.hpp" #line 2 "graph/graph_template.hpp" #include <vector> #include <cassert> template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {} friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; } friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: {id: cost(from, to) = cost} return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> struct Graph { struct EdgeIterators { public: using Iterator = typename std::vector<Edge<T>>::iterator; EdgeIterators() = default; EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {} Iterator begin() const { return begit; } Iterator end() const { return endit; } size_t size() const { return std::distance(begit, endit); } Edge<T>& operator[](int i) const { return begit[i]; } private: Iterator begit, endit; }; int n, m; bool is_build, is_directed; std::vector<Edge<T>> edges; // CSR (Compressed Row Storage) 形式用 std::vector<int> start; std::vector<Edge<T>> csr_edges; Graph() = default; Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {} // 辺を追加し, その辺が何番目に追加されたかを返す int add_edge(const int from, const int to, const T cost = T(1), int id = -1) { assert(!is_build); assert(0 <= from and from < n); assert(0 <= to and to < n); if (id == -1) id = m; edges.emplace_back(from, to, cost, id); return m++; } // CSR 形式でグラフを構築 void build() { assert(!is_build); for (auto&& e : edges) { start[e.from + 1]++; if (!is_directed) start[e.to + 1]++; } for (int v = 0; v < n; v++) start[v + 1] += start[v]; auto counter = start; csr_edges.resize(start.back() + 1); for (auto&& e : edges) { csr_edges[counter[e.from]++] = e; if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id); } is_build = true; } EdgeIterators operator[](int i) { if (!is_build) build(); return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]); } size_t size() const { return (size_t)(n); } friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) { os << "["; for (int i = 0; i < (int)(g.size()); i++) { os << "["; for (int j = 0; j < (int)(g[i].size()); j++) { os << g[i][j]; if (j + 1 != (int)(g[i].size())) os << ", "; } os << "]"; if (i + 1 != (int)(g.size())) os << ", "; } return os << "]"; } }; #line 4 "graph/warshall_floyd.hpp" template <class T> std::vector<std::vector<T>> warshall_floyd(Graph<T>& g, const T inf) { const int n = (int)(g.size()); std::vector dist(n, std::vector<T>(n, inf)); for (int i = 0; i < n; i++) { dist[i][i] = 0; for (auto&& e : g[i]) { dist[e.from][e.to] = std::min(dist[e.from][e.to], e.cost); } } for (int k = 0; k < n; k++) { for (int i = 0; i < n; i++) { if (dist[i][k] == inf) continue; for (int j = 0; j < n; j++) { if (dist[k][j] == inf) continue; dist[i][j] = std::min(dist[i][j], dist[i][k] + dist[k][j]); } } } // 負閉路検出 for (int i = 0; i < n; i++) { if (dist[i][i] < 0) dist[i][i] = -inf; } // 負閉路をもとに小さくできるパスについて調べる for (int k = 0; k < n; k++) { for (int i = 0; i < n; i++) { if (dist[i][k] == inf) continue; for (int j = 0; j < n; j++) { if (dist[k][j] == inf) continue; T nd = dist[i][k] + dist[k][j]; if (dist[i][k] == -inf or dist[k][j] == -inf) nd = -inf; dist[i][j] = std::min(dist[i][j], nd); } } } return dist; }