This documentation is automatically generated by online-judge-tools/verification-helper
#include "icpc/ntt.hpp"
#pragma once
#include "icpc/template.hpp"
// https://onlinejudge.u-aizu.ac.jp/problems/3331
template <class Mint> void ntt(bool type, V<Mint>& a) {
int n = int(a.size()), s = 0;
while ((1 << s) < n) s++;
assert(1 << s == n);
static V<Mint> ep, iep;
while (int(ep.size()) <= s) {
ep.push_back(Mint::G.pow(Mint(-1).v / (1 << ep.size())));
iep.push_back(ep.back().inv());
}
V<Mint> b(n);
for (int i = 1; i <= s; i++) {
int w = 1 << (s - i);
Mint base = type ? iep[i] : ep[i], now = 1;
for (int y = 0; y < n / 2; y += w) {
REP(x, w) {
auto l = a[y << 1 | x];
auto r = now * a[y << 1 | x | w];
b[y | x] = l + r;
b[y | x | n >> 1] = l - r;
}
now *= base;
}
swap(a, b);
}
}
template <class Mint> V<Mint> multiply(const V<Mint>& a, const V<Mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (min(n, m) <= 8) {
V<Mint> ans(n + m - 1);
REP(i, n) REP(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
int lg = 0;
while ((1 << lg) < n + m - 1) lg++;
int z = 1 << lg;
auto a2 = a, b2 = b;
a2.resize(z);
b2.resize(z);
ntt(false, a2);
ntt(false, b2);
REP(i, z) a2[i] *= b2[i];
ntt(true, a2);
a2.resize(n + m - 1);
Mint iz = Mint(z).inv();
REP(i, n + m - 1) a2[i] *= iz;
return a2;
}
#line 2 "icpc/ntt.hpp"
#line 2 "icpc/template.hpp"
#include <bits/stdc++.h>
using namespace std;
using ll = long long;
#define REP(i, n) for (int i = 0; i < (n); i++)
template <class T> using V = vector<T>;
template <class T> ostream& operator<<(ostream& os, const V<T>& v) {
os << "[ ";
for (auto& vi : v) os << vi << ", ";
return os << "]";
}
#ifdef LOCAL
#define show(x) cerr << __LINE__ << " : " << #x << " = " << x << endl;
#else
#define show(x) true
#endif
using uint = unsigned int;
using ull = unsigned long long;
// g++ -g -fsanitize=undefined,address -DLOCAL -std=gnu++17
#line 4 "icpc/ntt.hpp"
// https://onlinejudge.u-aizu.ac.jp/problems/3331
template <class Mint> void ntt(bool type, V<Mint>& a) {
int n = int(a.size()), s = 0;
while ((1 << s) < n) s++;
assert(1 << s == n);
static V<Mint> ep, iep;
while (int(ep.size()) <= s) {
ep.push_back(Mint::G.pow(Mint(-1).v / (1 << ep.size())));
iep.push_back(ep.back().inv());
}
V<Mint> b(n);
for (int i = 1; i <= s; i++) {
int w = 1 << (s - i);
Mint base = type ? iep[i] : ep[i], now = 1;
for (int y = 0; y < n / 2; y += w) {
REP(x, w) {
auto l = a[y << 1 | x];
auto r = now * a[y << 1 | x | w];
b[y | x] = l + r;
b[y | x | n >> 1] = l - r;
}
now *= base;
}
swap(a, b);
}
}
template <class Mint> V<Mint> multiply(const V<Mint>& a, const V<Mint>& b) {
int n = int(a.size()), m = int(b.size());
if (!n || !m) return {};
if (min(n, m) <= 8) {
V<Mint> ans(n + m - 1);
REP(i, n) REP(j, m) ans[i + j] += a[i] * b[j];
return ans;
}
int lg = 0;
while ((1 << lg) < n + m - 1) lg++;
int z = 1 << lg;
auto a2 = a, b2 = b;
a2.resize(z);
b2.resize(z);
ntt(false, a2);
ntt(false, b2);
REP(i, z) a2[i] *= b2[i];
ntt(true, a2);
a2.resize(n + m - 1);
Mint iz = Mint(z).inv();
REP(i, n + m - 1) a2[i] *= iz;
return a2;
}