This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B" #define ERROR 0.00000001 #include <iostream> #include <iomanip> #include "geometry/line.hpp" int main() { Line<double> L; int Q; std::cin >> L >> Q; while (Q--) { Point<double> P; std::cin >> P; auto ans = reflection(L, P); std::cout << std::fixed << std::setprecision(15) << ans.x << ' ' << ans.y << '\n'; } return 0; }
#line 1 "verify/geometry/reflection.test.cpp" #define PROBLEM "http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B" #define ERROR 0.00000001 #include <iostream> #include <iomanip> #line 2 "geometry/line.hpp" #line 2 "geometry/point.hpp" #line 2 "geometry/geometry_template.hpp" #include <type_traits> // Constants (EPS, PI) // EPS の変更は Constants<T>::set_eps(new_eps) で template <class T> struct Constants { static T EPS; static void set_eps(const T e) { EPS = e; } static constexpr T PI = 3.14159'26535'89793L; }; template <> double Constants<double>::EPS = 1e-9; template <> long double Constants<long double>::EPS = 1e-12; template <> long long Constants<long long>::EPS = 0; // 汎用関数 template <class T> inline int sign(const T x) { return x < -Constants<T>::EPS ? -1 : (x > Constants<T>::EPS ? 1 : 0); } template <class T> inline bool equal(const T a, const T b) { return sign(a - b) == 0; } template <class T> inline T radian_to_degree(const T r) { return r * 180.0 / Constants<T>::PI; } template <class T> inline T degree_to_radian(const T d) { return d * Constants<T>::PI / 180.0; } // type traits template <class T> using is_geometry_floating_point = typename std::conditional<std::is_same<T, double>::value || std::is_same<T, long double>::value, std::true_type, std::false_type>::type; template <class T> using is_geometry_integer = typename std::conditional<std::is_same<T, long long>::value, std::true_type, std::false_type>::type; template <class T> using is_geometry = typename std::conditional<is_geometry_floating_point<T>::value || is_geometry_integer<T>::value, std::true_type, std::false_type>::type; #line 4 "geometry/point.hpp" #include <cmath> #include <cassert> // 点 template <class T> struct Point { T x, y; Point() = default; Point(const T x, const T y) : x(x), y(y) {} template <class U> Point(const Point<U> p) : x(p.x), y(p.y) {} Point& operator+=(const Point& p) { x += p.x, y += p.y; return *this; } Point& operator-=(const Point& p) { x -= p.x, y -= p.y; return *this; } Point& operator*=(const Point& p) { static_assert(is_geometry_floating_point<T>::value == true); return *this = Point(x * p.x - y * p.y, x * p.y + y * p.x); } Point& operator/=(const Point& p) { static_assert(is_geometry_floating_point<T>::value == true); return *this = Point(x * p.x + y * p.y, -x * p.y + y * p.x) / (p.x * p.x + p.y * p.y); } Point& operator*=(const T k) { x *= k, y *= k; return *this; } Point& operator/=(const T k) { static_assert(is_geometry_floating_point<T>::value == true); x /= k, y /= k; return *this; } Point operator+() const { return *this; } Point operator-() const { return Point(-x, -y); } friend Point operator+(const Point& a, const Point& b) { return Point(a) += b; } friend Point operator-(const Point& a, const Point& b) { return Point(a) -= b; } friend Point operator*(const Point& a, const Point& b) { return Point(a) *= b; } friend Point operator/(const Point& a, const Point& b) { return Point(a) /= b; } friend Point operator*(const Point& p, const T k) { return Point(p) *= k; } friend Point operator/(const Point& p, const T k) { return Point(p) /= k; } // 辞書式順序 friend bool operator<(const Point& a, const Point& b) { return a.x == b.x ? a.y < b.y : a.x < b.x; } friend bool operator>(const Point& a, const Point& b) { return a.x == b.x ? a.y > b.y : a.x > b.x; } friend bool operator==(const Point& a, const Point& b) { return a.x == b.x and a.y == b.y; } // I/O friend std::istream& operator>>(std::istream& is, Point& p) { return is >> p.x >> p.y; } friend std::ostream& operator<<(std::ostream& os, const Point& p) { return os << '(' << p.x << ' ' << p.y << ')'; } }; // 汎用関数 // 点の一致判定 template <class T> inline bool equal(const Point<T>& a, const Point<T>& b) { return equal(a.x, b.x) and equal(a.y, b.y); } // 内積 template <class T> inline T dot(const Point<T>& a, const Point<T>& b) { return a.x * b.x + a.y * b.y; } // 外積 template <class T> inline T cross(const Point<T>& a, const Point<T>& b) { return a.x * b.y - a.y * b.x; } // rad ラジアンだけ反時計回りに回転 template <class T> inline Point<T> rotate(const Point<T>& p, const T theta) { static_assert(is_geometry_floating_point<T>::value == true); return p * Point<T>(std::cos(theta), std::sin(theta)); } // (x, y) の辞書式順序 (誤差許容) template <class T> inline bool compare_x(const Point<T>& a, const Point<T>& b) { return equal(a.x, b.x) ? sign(a.y - b.y) < 0 : sign(a.x - b.x) < 0; } // (y, x) の辞書式順序 (誤差許容) template <class T> inline bool compare_y(const Point<T>& a, const Point<T>& b) { return equal(a.y, b.y) ? sign(a.x - b.x) < 0 : sign(a.y - b.y) < 0; } // 整数のまま行う偏角ソート // 無限の精度をもつ arg(p) = atan2(y, x) で比較し, 同じ場合は norm(p) で比較 (atan2(0, 0) = 0 とする) // 基本的に (-PI, PI] でソートされ, 点 (0, 0) は (-PI, 0) と [0, PI] の間に入る // https://ngtkana.hatenablog.com/entry/2021/11/13/202103 // https://judge.yosupo.jp/problem/sort_points_by_argument template <class T> inline bool compare_atan2(const Point<T>& a, const Point<T>& b) { static_assert(is_geometry_integer<T>::value == true); if ((Point<T>(a.y, -a.x) > Point<T>(0, 0)) == (Point<T>(b.y, -b.x) > Point<T>(0, 0))) { // a, b in (-PI, 0] or a, b in (0, PI] if (a.x * b.y != a.y * b.x) return a.x * b.y > a.y * b.x; // cross(a, b) != 0 return a == Point<T>(0, 0) ? b.x > 0 and b.y == 0 : (b == Point<T>(0, 0) ? a.y < 0 : norm(a) < norm(b)); } return Point<T>(a.y, -a.x) < Point<T>(b.y, -b.x); } // 絶対値の 2 乗 template <class T> inline T norm(const Point<T>& p) { return p.x * p.x + p.y * p.y; } // 絶対値 template <class T> inline T abs(const Point<T>& p) { static_assert(is_geometry_floating_point<T>::value == true); return std::sqrt(norm(p)); } // 偏角 template <class T> inline T arg(const Point<T>& p) { static_assert(is_geometry_floating_point<T>::value == true); return std::atan2(p.y, p.x); // (-PI, PI] } // 共役複素数 (x 軸について対象な点) template <class T> inline Point<T> conj(const Point<T>& p) { return Point(p.x, -p.y); } // 極座標系 -> 直交座標系 (絶対値が rho で偏角が theta ラジアン) template <class T> inline Point<T> polar(const T rho, const T theta = T(0)) { static_assert(is_geometry_floating_point<T>::value == true); assert(sign(rho) >= 0); return Point<T>(std::cos(theta), std::sin(theta)) * rho; } // ccw の戻り値 enum class Ccw { COUNTER_CLOCKWISE = 1, // a->b->c 反時計回り CLOCKWISE = -1, // a->b->c 時計回り ONLINE_BACK = 2, // c->a->b 直線 ONLINE_FRONT = -2, // a->b->c 直線 ON_SEGMENT = 0 // a->c->b 直線 }; // 点 a, b, c の位置関係 // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_C template <class T> Ccw ccw(const Point<T>& a, const Point<T>& b, const Point<T>& c) { Point<T> ab = b - a; Point<T> ac = c - a; if (sign(cross(ab, ac)) == 1) return Ccw::COUNTER_CLOCKWISE; if (sign(cross(ab, ac)) == -1) return Ccw::CLOCKWISE; if (sign(dot(ab, ac)) == -1) return Ccw::ONLINE_BACK; if (sign(norm(ab) - norm(ac)) == -1) return Ccw::ONLINE_FRONT; return Ccw::ON_SEGMENT; } // 線分 a -> b から 線分 a -> c までの角度 (ラジアンで -PI より大きく PI 以下) template <class T> T get_angle(const Point<T>& a, const Point<T>& b, const Point<T>& c) { Point<T> ab = b - a; Point<T> ac = c - a; // a-bが x 軸になるように回転 ac *= conj(ab) / norm(ab); return arg(ac); // (-PI, PI] } #line 4 "geometry/line.hpp" // 直線 template <class T> struct Line { Point<T> a, b; Line() = default; Line(const Point<T>& a, const Point<T>& b) : a(a), b(b) {} // Ax + By = C Line(const T A, const T B, const T C) { static_assert(is_geometry_floating_point<T>::value == true); assert(!(equal(A, T(0)) and equal(B, T(0)))); if (equal(A, T(0))) { a = Point<T>(T(0), C / B), b = Point<T>(T(1), C / B); } else if (equal(B, T(0))) { a = Point<T>(C / A, T(0)), b = Point<T>(C / A, T(1)); } else if (equal(C, T(0))) { a = Point<T>(T(0), T(0)), b = Point<T>(T(1), -A / B); } else { a = Point<T>(T(0), C / B), b = Point<T>(C / A, T(0)); } } friend std::istream& operator>>(std::istream& is, Line& p) { return is >> p.a >> p.b; } friend std::ostream& operator<<(std::ostream& os, const Line& p) { return os << p.a << "->" << p.b; } }; // 線分 template <class T> struct Segment : Line<T> { Segment() = default; Segment(const Point<T>& a, const Point<T>& b) : Line<T>(a, b) {} }; // 点 p から直線 l に下ろした垂線と直線 l の交点 // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_A template <class T> Point<T> projection(const Line<T>& l, const Point<T>& p) { static_assert(is_geometry_floating_point<T>::value == true); T t = dot(p - l.a, l.b - l.a) / norm(l.b - l.a); return l.a + (l.b - l.a) * t; } // 直線 l に関して点 p と対象な位置にある点 // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_1_B template <class T> Point<T> reflection(const Line<T>& l, const Point<T>& p) { static_assert(is_geometry_floating_point<T>::value == true); return p + (projection(l, p) - p) * T(2); } // 直線 l1, l2 の垂直判定 // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <class T> inline bool is_orthogonal(const Line<T>& l1, const Line<T>& l2) { return sign(dot(l1.b - l1.a, l2.b - l2.a)) == 0; } // 直線 l1, l2 の平行判定 // http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=CGL_2_A template <class T> inline bool is_parallel(const Line<T>& l1, const Line<T>& l2) { return sign(cross(l1.b - l1.a, l2.b - l2.a)) == 0; } #line 8 "verify/geometry/reflection.test.cpp" int main() { Line<double> L; int Q; std::cin >> L >> Q; while (Q--) { Point<double> P; std::cin >> P; auto ans = reflection(L, P); std::cout << std::fixed << std::setprecision(15) << ans.x << ' ' << ans.y << '\n'; } return 0; }