This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_D" #include <iostream> #include "graph/read_graph.hpp" #include "graph/euler_tour.hpp" #include "data_structure/segment_tree.hpp" #include "algebra/monoid_s/monoid_sum.hpp" int main() { int N; std::cin >> N; Graph<int> g(N); std::vector<int> id(N, -1); for (int i = 0; i < N; i++) { int K; std::cin >> K; for (int j = 0; j < K; j++) { int c; std::cin >> c; id[c] = g.add_edge(i, c, 0); } } EulerTour et(g); SegmentTree<MonoidSum<long long>> seg(2 * N - 2); int Q; std::cin >> Q; for (int q = 0; q < Q; q++) { int type; std::cin >> type; if (type == 0) { int v, w; std::cin >> v >> w; int eid = id[v]; seg.chset(et.esl[eid], w); seg.chset(et.esr[eid], -w); } else { int u; std::cin >> u; std::cout << seg.prod(0, et.vsl[u]) << '\n'; } } return 0; }
#line 1 "verify/graph/euler_tour.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_D" #include <iostream> #line 2 "graph/read_graph.hpp" #line 2 "graph/graph_template.hpp" #include <vector> #include <cassert> template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {} friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; } friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: {id: cost(from, to) = cost} return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> struct Graph { struct EdgeIterators { public: using Iterator = typename std::vector<Edge<T>>::iterator; EdgeIterators() = default; EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {} Iterator begin() const { return begit; } Iterator end() const { return endit; } size_t size() const { return std::distance(begit, endit); } Edge<T>& operator[](int i) const { return begit[i]; } private: Iterator begit, endit; }; int n, m; bool is_build, is_directed; std::vector<Edge<T>> edges; // CSR (Compressed Row Storage) 形式用 std::vector<int> start; std::vector<Edge<T>> csr_edges; Graph() = default; Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {} // 辺を追加し, その辺が何番目に追加されたかを返す int add_edge(const int from, const int to, const T cost = T(1), int id = -1) { assert(!is_build); assert(0 <= from and from < n); assert(0 <= to and to < n); if (id == -1) id = m; edges.emplace_back(from, to, cost, id); return m++; } // CSR 形式でグラフを構築 void build() { assert(!is_build); for (auto&& e : edges) { start[e.from + 1]++; if (!is_directed) start[e.to + 1]++; } for (int v = 0; v < n; v++) start[v + 1] += start[v]; auto counter = start; csr_edges.resize(start.back() + 1); for (auto&& e : edges) { csr_edges[counter[e.from]++] = e; if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id); } is_build = true; } EdgeIterators operator[](int i) { if (!is_build) build(); return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]); } size_t size() const { return (size_t)(n); } friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) { os << "["; for (int i = 0; i < (int)(g.size()); i++) { os << "["; for (int j = 0; j < (int)(g[i].size()); j++) { os << g[i][j]; if (j + 1 != (int)(g[i].size())) os << ", "; } os << "]"; if (i + 1 != (int)(g.size())) os << ", "; } return os << "]"; } }; #line 4 "graph/read_graph.hpp" template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n, directed); for (int i = 0; i < m; i++) { int a, b; std::cin >> a >> b; a -= offset, b -= offset; T c = 1; if (weight) std::cin >> c; g.add_edge(a, b, c); } g.build(); return g; } template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n, directed); for (int i = 1; i < n; i++) { int p; std::cin >> p; p -= offset; T c = 1; if (weight) std::cin >> c; g.add_edge(p, i, c); } g.build(); return g; } #line 2 "graph/euler_tour.hpp" #line 4 "graph/euler_tour.hpp" #include <tuple> // Euler Tour // O(n + m) // 辺と頂点のうち, 変化させるものを要素と見て, そうでないもので要素を区切ると考えると良い template <class T> struct EulerTour { int n; std::vector<int> vertices; // DFS で訪問する頂点の番号を並べたもの, 2 * n - 1 要素 std::vector<int> edges; // DFS で通る辺の番号を並べたもの, 2 * n - 2 要素 std::vector<int> dir; // DFS で通る辺の向きが 0 = 子供方向, 1 = 親方向 std::vector<int> vsl; // vsl[v]: vertices[i] = v となる i の最小値 std::vector<int> vsr; // vsr[v]: vertices[i] = v となる i の最大値 std::vector<int> esl; // esl[e]: edges[i] = e かつ dir[i] = 0 となる i std::vector<int> esr; // esr[e]: edges[i] = e かつ dir[i] = 1 となる i EulerTour(Graph<T>& g, const int root = 0) : n((int)(g.size())), vsl(n, 2 * n - 1), vsr(n, -1), esl(n - 1, -1), esr(n - 1, -1) { vertices.reserve(2 * n - 1); edges.reserve(2 * n - 2); dir.reserve(2 * n - 2); auto dfs = [&](auto f, int cur, int par) -> void { for (auto&& e : g[cur]) { if (e.to == par) continue; // 頂点を追加 vertices.emplace_back(cur); // 子供方向の辺を追加 edges.emplace_back(e.id); dir.emplace_back(0); // DFS f(f, e.to, cur); // 親方向の辺を追加 edges.emplace_back(e.id); dir.emplace_back(1); } // 頂点を追加 vertices.emplace_back(cur); }; dfs(dfs, root, -1); for (int i = 2 * n - 2; i >= 0; i--) vsl[vertices[i]] = i; for (int i = 0; i < 2 * n - 1; i++) vsr[vertices[i]] = i; for (int i = 0; i < 2 * n - 2; i++) (dir[i] == 0 ? esl[edges[i]] : esr[edges[i]]) = i; } }; #line 4 "data_structure/segment_tree.hpp" template <class MS> struct SegmentTree { public: using S = typename MS::S; SegmentTree() : SegmentTree(0) {} SegmentTree(int n) : SegmentTree(std::vector<S>(n, MS::e())) {} SegmentTree(const std::vector<S>& v) : n((int)(v.size())) { log = 0; while ((1U << log) < (unsigned int)(n)) log++; size = 1 << log; d = std::vector<S>(size << 1, MS::e()); for (int i = 0; i < n; i++) d[i + size] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, const S& x) { assert(0 <= p and p < n); p += size; d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } void chset(int p, const S& x) { assert(0 <= p and p < n); p += size; d[p] = MS::op(d[p], x); for (int i = 1; i <= log; i++) update(p >> i); } S operator[](int p) const { assert(0 <= p and p < n); return d[p + size]; } S get(int p) const { assert(0 <= p && p < n); return d[p + size]; } S prod(int l, int r) const { assert(0 <= l and l <= r and r <= n); S sml = MS::e(), smr = MS::e(); l += size; r += size; while (l < r) { if (l & 1) sml = MS::op(sml, d[l++]); if (r & 1) smr = MS::op(d[--r], smr); l >>= 1; r >>= 1; } return MS::op(sml, smr); } S all_prod() const { return d[1]; } template <class G> int max_right(int l, G& g) const { assert(0 <= l and l <= n); assert(g(MS::e())); if (l == n) return n; l += size; S sm = MS::e(); do { while ((l & 1) == 0) l >>= 1; if (!g(MS::op(sm, d[l]))) { while (l < size) { l <<= 1; if (g(MS::op(sm, d[l]))) { sm = MS::op(sm, d[l]); l++; } } return l - size; } sm = MS::op(sm, d[l]); l++; } while ((l & -l) != l); return n; } template <class G> int min_left(int r, G& g) const { assert(0 <= r and r <= n); assert(g(MS::e())); if (r == 0) return 0; r += size; S sm = MS::e(); do { r--; while (r > 1 and (r & 1)) r >>= 1; if (!g(MS::op(d[r], sm))) { while (r < size) { r = (r << 1) | 1; if (g(MS::op(d[r], sm))) { sm = MS::op(d[r], sm); r--; } } return r + 1 - size; } sm = MS::op(d[r], sm); } while ((r & -r) != r); return 0; } std::vector<S> make_vector() { std::vector<S> vec(n); for (int i = 0; i < n; i++) vec[i] = get(i); return vec; } private: int n, log, size; std::vector<S> d; inline void update(int k) { d[k] = MS::op(d[k << 1], d[(k << 1) | 1]); } }; #line 2 "algebra/monoid_s/monoid_sum.hpp" // MS template <class T> struct MonoidSum { using S = T; static constexpr S op(S a, S b) { return a + b; } static constexpr S e() { return T(0); } }; #line 9 "verify/graph/euler_tour.test.cpp" int main() { int N; std::cin >> N; Graph<int> g(N); std::vector<int> id(N, -1); for (int i = 0; i < N; i++) { int K; std::cin >> K; for (int j = 0; j < K; j++) { int c; std::cin >> c; id[c] = g.add_edge(i, c, 0); } } EulerTour et(g); SegmentTree<MonoidSum<long long>> seg(2 * N - 2); int Q; std::cin >> Q; for (int q = 0; q < Q; q++) { int type; std::cin >> type; if (type == 0) { int v, w; std::cin >> v >> w; int eid = id[v]; seg.chset(et.esl[eid], w); seg.chset(et.esr[eid], -w); } else { int u; std::cin >> u; std::cout << seg.prod(0, et.vsl[u]) << '\n'; } } return 0; }