This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_3_A"
#include <iostream>
#include <algorithm>
#include "graph/read_graph.hpp"
#include "graph/low_link.hpp"
int main() {
int N, M;
std::cin >> N >> M;
auto g = read_graph<int>(N, M, false, false, 0);
LowLink llink(g);
auto ans = llink.articulations;
std::sort(ans.begin(), ans.end());
for (auto&& v : ans) std::cout << v << '\n';
return 0;
}
#line 1 "verify/graph/low_link_1.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_3_A"
#include <iostream>
#include <algorithm>
#line 2 "graph/read_graph.hpp"
#line 2 "graph/graph_template.hpp"
#include <vector>
#include <cassert>
template <class T> struct Edge {
int from, to;
T cost;
int id;
Edge() = default;
Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {}
friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; }
friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) {
// output format: {id: cost(from, to) = cost}
return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}";
}
};
template <class T> using Edges = std::vector<Edge<T>>;
template <class T> struct Graph {
struct EdgeIterators {
public:
using Iterator = typename std::vector<Edge<T>>::iterator;
EdgeIterators() = default;
EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {}
Iterator begin() const { return begit; }
Iterator end() const { return endit; }
size_t size() const { return std::distance(begit, endit); }
Edge<T>& operator[](int i) const { return begit[i]; }
private:
Iterator begit, endit;
};
int n, m;
bool is_build, is_directed;
std::vector<Edge<T>> edges;
// CSR (Compressed Row Storage) 形式用
std::vector<int> start;
std::vector<Edge<T>> csr_edges;
Graph() = default;
Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {}
// 辺を追加し, その辺が何番目に追加されたかを返す
int add_edge(const int from, const int to, const T cost = T(1), int id = -1) {
assert(!is_build);
assert(0 <= from and from < n);
assert(0 <= to and to < n);
if (id == -1) id = m;
edges.emplace_back(from, to, cost, id);
return m++;
}
// CSR 形式でグラフを構築
void build() {
assert(!is_build);
for (auto&& e : edges) {
start[e.from + 1]++;
if (!is_directed) start[e.to + 1]++;
}
for (int v = 0; v < n; v++) start[v + 1] += start[v];
auto counter = start;
csr_edges.resize(start.back() + 1);
for (auto&& e : edges) {
csr_edges[counter[e.from]++] = e;
if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id);
}
is_build = true;
}
EdgeIterators operator[](int i) {
if (!is_build) build();
return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]);
}
size_t size() const { return (size_t)(n); }
friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) {
os << "[";
for (int i = 0; i < (int)(g.size()); i++) {
os << "[";
for (int j = 0; j < (int)(g[i].size()); j++) {
os << g[i][j];
if (j + 1 != (int)(g[i].size())) os << ", ";
}
os << "]";
if (i + 1 != (int)(g.size())) os << ", ";
}
return os << "]";
}
};
#line 4 "graph/read_graph.hpp"
template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) {
Graph<T> g(n, directed);
for (int i = 0; i < m; i++) {
int a, b;
std::cin >> a >> b;
a -= offset, b -= offset;
T c = 1;
if (weight) std::cin >> c;
g.add_edge(a, b, c);
}
g.build();
return g;
}
template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) {
Graph<T> g(n, directed);
for (int i = 1; i < n; i++) {
int p;
std::cin >> p;
p -= offset;
T c = 1;
if (weight) std::cin >> c;
g.add_edge(p, i, c);
}
g.build();
return g;
}
#line 2 "graph/low_link.hpp"
#line 4 "graph/low_link.hpp"
template <class T> struct LowLink {
int n;
std::vector<int> ord, low;
std::vector<std::vector<int>> dfs_tree;
std::vector<int> articulations;
std::vector<std::pair<int, int>> bridges; // edges {u, v} (u < v)
std::vector<int> roots;
LowLink(Graph<T>& g) : n((int)(g.size())), ord(n, -1), low(n, -1), dfs_tree(n) {
int ord_id = 0;
auto dfs = [&](auto f, int cur, int par) -> void {
low[cur] = ord[cur] = ord_id++;
bool is_articulation = false;
for (auto&& e : g[cur]) {
if (ord[e.to] == -1) {
// DFS 木上の辺に対する処理
f(f, e.to, cur);
dfs_tree[cur].push_back(e.to);
// e が DFS 木に含まれているので後退辺をすでに通った low[e.to] を使って更新して良い
low[cur] = std::min(low[cur], low[e.to]);
is_articulation |= (par != -1) and (ord[cur] <= low[e.to]);
if (ord[cur] < low[e.to]) {
bridges.emplace_back(std::minmax(cur, e.to));
}
} else if (e.to != par) {
// 後退辺に対する処理
// Todo: multiple edges
low[cur] = std::min(low[cur], ord[e.to]);
}
}
is_articulation |= par == -1 and (int)(dfs_tree[cur].size()) > 1;
if (is_articulation) articulations.push_back(cur);
return;
};
for (int i = 0; i < n; i++) {
if (ord[i] == -1) {
roots.push_back(i);
dfs(dfs, i, -1);
}
}
}
// 連結成分数
int count_components() { return (int)(roots.size()); }
// 頂点 x を取り除くともともと 1 つだった連結成分がいくつになるか
int count_components_remove(int x) {
if (std::binary_search(roots.begin(), roots.end(), x)) {
return (int)(dfs_tree[x].size());
} else {
int c = 0;
for (auto&& e : dfs_tree[x]) {
if (ord[x] <= low[e]) c++;
}
// 親の分で +1
return c + 1;
}
}
};
#line 8 "verify/graph/low_link_1.test.cpp"
int main() {
int N, M;
std::cin >> N >> M;
auto g = read_graph<int>(N, M, false, false, 0);
LowLink llink(g);
auto ans = llink.articulations;
std::sort(ans.begin(), ans.end());
for (auto&& v : ans) std::cout << v << '\n';
return 0;
}