rcpl

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ruthen71/rcpl

:heavy_check_mark: verify/graph/low_link_2.test.cpp

Depends on

Code

#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_3_B"

#include <iostream>
#include <algorithm>

#include "graph/read_graph.hpp"
#include "graph/low_link.hpp"

int main() {
    int N, M;
    std::cin >> N >> M;
    auto g = read_graph<int>(N, M, false, false, 0);
    LowLink llink(g);
    auto ans = llink.bridges;
    std::sort(ans.begin(), ans.end());
    for (auto&& [s, t] : ans) std::cout << s << ' ' << t << '\n';
    return 0;
}
#line 1 "verify/graph/low_link_2.test.cpp"
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_3_B"

#include <iostream>
#include <algorithm>

#line 2 "graph/read_graph.hpp"

#line 2 "graph/graph_template.hpp"

#include <vector>
#include <cassert>

template <class T> struct Edge {
    int from, to;
    T cost;
    int id;

    Edge() = default;
    Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {}

    friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; }

    friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) {
        // output format: {id: cost(from, to) = cost}
        return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}";
    }
};
template <class T> using Edges = std::vector<Edge<T>>;

template <class T> struct Graph {
    struct EdgeIterators {
       public:
        using Iterator = typename std::vector<Edge<T>>::iterator;
        EdgeIterators() = default;
        EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {}
        Iterator begin() const { return begit; }
        Iterator end() const { return endit; }
        size_t size() const { return std::distance(begit, endit); }
        Edge<T>& operator[](int i) const { return begit[i]; }

       private:
        Iterator begit, endit;
    };

    int n, m;
    bool is_build, is_directed;
    std::vector<Edge<T>> edges;

    // CSR (Compressed Row Storage) 形式用
    std::vector<int> start;
    std::vector<Edge<T>> csr_edges;

    Graph() = default;
    Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {}

    // 辺を追加し, その辺が何番目に追加されたかを返す
    int add_edge(const int from, const int to, const T cost = T(1), int id = -1) {
        assert(!is_build);
        assert(0 <= from and from < n);
        assert(0 <= to and to < n);
        if (id == -1) id = m;
        edges.emplace_back(from, to, cost, id);
        return m++;
    }

    // CSR 形式でグラフを構築
    void build() {
        assert(!is_build);
        for (auto&& e : edges) {
            start[e.from + 1]++;
            if (!is_directed) start[e.to + 1]++;
        }
        for (int v = 0; v < n; v++) start[v + 1] += start[v];
        auto counter = start;
        csr_edges.resize(start.back() + 1);
        for (auto&& e : edges) {
            csr_edges[counter[e.from]++] = e;
            if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id);
        }
        is_build = true;
    }

    EdgeIterators operator[](int i) {
        if (!is_build) build();
        return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]);
    }

    size_t size() const { return (size_t)(n); }

    friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) {
        os << "[";
        for (int i = 0; i < (int)(g.size()); i++) {
            os << "[";
            for (int j = 0; j < (int)(g[i].size()); j++) {
                os << g[i][j];
                if (j + 1 != (int)(g[i].size())) os << ", ";
            }
            os << "]";
            if (i + 1 != (int)(g.size())) os << ", ";
        }
        return os << "]";
    }
};
#line 4 "graph/read_graph.hpp"

template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) {
    Graph<T> g(n, directed);
    for (int i = 0; i < m; i++) {
        int a, b;
        std::cin >> a >> b;
        a -= offset, b -= offset;
        T c = 1;
        if (weight) std::cin >> c;
        g.add_edge(a, b, c);
    }
    g.build();
    return g;
}

template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) {
    Graph<T> g(n, directed);
    for (int i = 1; i < n; i++) {
        int p;
        std::cin >> p;
        p -= offset;
        T c = 1;
        if (weight) std::cin >> c;
        g.add_edge(p, i, c);
    }
    g.build();
    return g;
}
#line 2 "graph/low_link.hpp"

#line 4 "graph/low_link.hpp"

template <class T> struct LowLink {
    int n;
    std::vector<int> ord, low;
    std::vector<std::vector<int>> dfs_tree;
    std::vector<int> articulations;
    std::vector<std::pair<int, int>> bridges;  // edges {u, v} (u < v)
    std::vector<int> roots;

    LowLink(Graph<T>& g) : n((int)(g.size())), ord(n, -1), low(n, -1), dfs_tree(n) {
        int ord_id = 0;
        auto dfs = [&](auto f, int cur, int par) -> void {
            low[cur] = ord[cur] = ord_id++;
            bool is_articulation = false;
            for (auto&& e : g[cur]) {
                if (ord[e.to] == -1) {
                    // DFS 木上の辺に対する処理
                    f(f, e.to, cur);
                    dfs_tree[cur].push_back(e.to);
                    // e が DFS 木に含まれているので後退辺をすでに通った low[e.to] を使って更新して良い
                    low[cur] = std::min(low[cur], low[e.to]);
                    is_articulation |= (par != -1) and (ord[cur] <= low[e.to]);
                    if (ord[cur] < low[e.to]) {
                        bridges.emplace_back(std::minmax(cur, e.to));
                    }
                } else if (e.to != par) {
                    // 後退辺に対する処理
                    // Todo: multiple edges
                    low[cur] = std::min(low[cur], ord[e.to]);
                }
            }
            is_articulation |= par == -1 and (int)(dfs_tree[cur].size()) > 1;
            if (is_articulation) articulations.push_back(cur);
            return;
        };
        for (int i = 0; i < n; i++) {
            if (ord[i] == -1) {
                roots.push_back(i);
                dfs(dfs, i, -1);
            }
        }
    }

    // 連結成分数
    int count_components() { return (int)(roots.size()); }

    // 頂点 x を取り除くともともと 1 つだった連結成分がいくつになるか
    int count_components_remove(int x) {
        if (std::binary_search(roots.begin(), roots.end(), x)) {
            return (int)(dfs_tree[x].size());
        } else {
            int c = 0;
            for (auto&& e : dfs_tree[x]) {
                if (ord[x] <= low[e]) c++;
            }
            // 親の分で +1
            return c + 1;
        }
    }
};
#line 8 "verify/graph/low_link_2.test.cpp"

int main() {
    int N, M;
    std::cin >> N >> M;
    auto g = read_graph<int>(N, M, false, false, 0);
    LowLink llink(g);
    auto ans = llink.bridges;
    std::sort(ans.begin(), ans.end());
    for (auto&& [s, t] : ans) std::cout << s << ' ' << t << '\n';
    return 0;
}
Back to top page