This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_A" #include <iostream> #include "graph/read_graph.hpp" #include "graph/tree_diameter.hpp" int main() { int N; std::cin >> N; auto g = read_graph<long long>(N, N - 1, true, false, 0); auto [d, path] = tree_diameter(g); std::cout << d << '\n'; return 0; }
#line 1 "verify/graph/tree_diameter_1.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_A" #include <iostream> #line 2 "graph/read_graph.hpp" #line 2 "graph/graph_template.hpp" #include <vector> #include <cassert> template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {} friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; } friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: {id: cost(from, to) = cost} return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> struct Graph { struct EdgeIterators { public: using Iterator = typename std::vector<Edge<T>>::iterator; EdgeIterators() = default; EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {} Iterator begin() const { return begit; } Iterator end() const { return endit; } size_t size() const { return std::distance(begit, endit); } Edge<T>& operator[](int i) const { return begit[i]; } private: Iterator begit, endit; }; int n, m; bool is_build, is_directed; std::vector<Edge<T>> edges; // CSR (Compressed Row Storage) 形式用 std::vector<int> start; std::vector<Edge<T>> csr_edges; Graph() = default; Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {} // 辺を追加し, その辺が何番目に追加されたかを返す int add_edge(const int from, const int to, const T cost = T(1), int id = -1) { assert(!is_build); assert(0 <= from and from < n); assert(0 <= to and to < n); if (id == -1) id = m; edges.emplace_back(from, to, cost, id); return m++; } // CSR 形式でグラフを構築 void build() { assert(!is_build); for (auto&& e : edges) { start[e.from + 1]++; if (!is_directed) start[e.to + 1]++; } for (int v = 0; v < n; v++) start[v + 1] += start[v]; auto counter = start; csr_edges.resize(start.back() + 1); for (auto&& e : edges) { csr_edges[counter[e.from]++] = e; if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id); } is_build = true; } EdgeIterators operator[](int i) { if (!is_build) build(); return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]); } size_t size() const { return (size_t)(n); } friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) { os << "["; for (int i = 0; i < (int)(g.size()); i++) { os << "["; for (int j = 0; j < (int)(g[i].size()); j++) { os << g[i][j]; if (j + 1 != (int)(g[i].size())) os << ", "; } os << "]"; if (i + 1 != (int)(g.size())) os << ", "; } return os << "]"; } }; #line 4 "graph/read_graph.hpp" template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n, directed); for (int i = 0; i < m; i++) { int a, b; std::cin >> a >> b; a -= offset, b -= offset; T c = 1; if (weight) std::cin >> c; g.add_edge(a, b, c); } g.build(); return g; } template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n, directed); for (int i = 1; i < n; i++) { int p; std::cin >> p; p -= offset; T c = 1; if (weight) std::cin >> c; g.add_edge(p, i, c); } g.build(); return g; } #line 2 "graph/tree_diameter.hpp" #line 2 "graph/restore_path.hpp" #line 4 "graph/restore_path.hpp" #include <algorithm> // restore path from root[t] to t std::vector<int> restore_path(std::vector<int>& par, int t) { std::vector<int> path = {t}; while (par[path.back()] != -1) path.emplace_back(par[path.back()]); std::reverse(path.begin(), path.end()); return path; } #line 5 "graph/tree_diameter.hpp" #include <utility> #line 8 "graph/tree_diameter.hpp" // {直径の辺の重みの総和, 通る頂点集合} template <class T> std::pair<T, std::vector<int>> tree_diameter(Graph<T>& g) { const int n = (int)(g.size()); std::vector<int> parent(n, -1); std::vector<T> dist(n); auto dfs = [&](auto f, int cur, int par) -> void { for (auto&& e : g[cur]) { if (e.to == par) continue; dist[e.to] = dist[cur] + e.cost; parent[e.to] = cur; f(f, e.to, cur); } return; }; dfs(dfs, 0, -1); int s = std::max_element(dist.begin(), dist.end()) - dist.begin(); dist.assign(n, 0); parent.assign(n, -1); dfs(dfs, s, -1); int t = std::max_element(dist.begin(), dist.end()) - dist.begin(); auto path = restore_path(parent, t); return {dist[t], path}; } #line 7 "verify/graph/tree_diameter_1.test.cpp" int main() { int N; std::cin >> N; auto g = read_graph<long long>(N, N - 1, true, false, 0); auto [d, path] = tree_diameter(g); std::cout << d << '\n'; return 0; }