rcpl

This documentation is automatically generated by online-judge-tools/verification-helper

View the Project on GitHub ruthen71/rcpl

:heavy_check_mark: verify/lc_data_structure/lc_range_affine_range_sum.test.cpp

Depends on

Code

#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"

#include <bits/stdc++.h>

#include "algebra/monoid_s_f/monoid_sum_size_affine.hpp"
#include "data_structure/lazy_segment_tree.hpp"
#include "math/static_modint.hpp"
using mint = mint998;

int main() {
    int N, Q;
    std::cin >> N >> Q;
    std::vector<std::pair<mint, int>> A(N);
    for (int i = 0; i < N; i++) {
        int a;
        std::cin >> a;
        A[i] = {mint(a), 1};
    }
    LazySegmentTree<MonoidSumSizeAffine<mint>> seg(A);
    while (Q--) {
        int t;
        std::cin >> t;
        if (t == 0) {
            int l, r, b, c;
            std::cin >> l >> r >> b >> c;
            seg.apply(l, r, {b, c});
        } else {
            int l, r;
            std::cin >> l >> r;
            std::cout << seg.prod(l, r).first.val() << '\n';
        }
    }
    return 0;
}
#line 1 "verify/lc_data_structure/lc_range_affine_range_sum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/range_affine_range_sum"

#include <bits/stdc++.h>

#line 2 "algebra/monoid_s/monoid_sum_size.hpp"
// MS
template <class T> struct MonoidSumSize {
    using S = std::pair<T, int>;
    static constexpr S op(S a, S b) { return {a.first + b.first, a.second + b.second}; }
    static constexpr S e() { return {T(0), 0}; }
};
#line 2 "algebra/monoid_f/monoid_affine.hpp"
// MF
template <class T> struct MonoidAffine {
    using F = std::pair<T, T>;  // a * x + b -> {a, b}
    // f(x) = f.first * x + f.second, g(x) = g.first * x + g.second
    // f(g(x)) = f.first * (g.first * x + g.second) + f.second
    //         = f.first * g.first * x + f.first * g.second + f.second
    static constexpr F composition(F f, F g) { return {f.first * g.first, f.first * g.second + f.second}; }
    static constexpr F id() { return {T(1), T(0)}; }
};
#line 4 "algebra/monoid_s_f/monoid_sum_size_affine.hpp"
// https://atcoder.jp/contests/practice2/tasks/practice2_k
// MSF
template <class T> struct MonoidSumSizeAffine {
    using MS = MonoidSumSize<T>;
    using MF = MonoidAffine<T>;
    using S = typename MS::S;
    using F = typename MF::F;
    static constexpr S mapping(F f, S x) { return {f.first * x.first + f.second * x.second, x.second}; }
};
#line 4 "data_structure/lazy_segment_tree.hpp"
template <class MSF> struct LazySegmentTree {
   public:
    using S = typename MSF::S;
    using F = typename MSF::F;
    using MS = typename MSF::MS;
    using MF = typename MSF::MF;
    LazySegmentTree() : LazySegmentTree(0) {}
    LazySegmentTree(int n) : LazySegmentTree(std::vector<S>(n, MS::e())) {}
    LazySegmentTree(const std::vector<S>& v) : n((int)(v.size())) {
        log = 0;
        while ((1U << log) < (unsigned int)(n)) log++;
        size = 1 << log;
        d = std::vector<S>(size << 1, MS::e());
        lz = std::vector<F>(size, MF::id());
        for (int i = 0; i < n; i++) d[i + size] = v[i];
        for (int i = size - 1; i >= 1; i--) {
            update(i);
        }
    }

    void set(int p, const S& x) {
        assert(0 <= p and p < n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = x;
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    void chset(int p, const S& x) {
        assert(0 <= p and p < n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = MS::op(d[p], x);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    S operator[](int p) {
        assert(0 <= p and p < n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S get(int p) {
        assert(0 <= p and p < n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        return d[p];
    }

    S prod(int l, int r) {
        assert(0 <= l and l <= r and r <= n);
        if (l == r) return MS::e();

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        S sml = MS::e(), smr = MS::e();
        while (l < r) {
            if (l & 1) sml = MS::op(sml, d[l++]);
            if (r & 1) smr = MS::op(d[--r], smr);
            l >>= 1;
            r >>= 1;
        }
        return MS::op(sml, smr);
    }

    S all_prod() { return d[1]; }

    void apply(int p, const F& f) {
        assert(0 <= p and p < n);
        p += size;
        for (int i = log; i >= 1; i--) push(p >> i);
        d[p] = MSF::mapping(f, d[p]);
        for (int i = 1; i <= log; i++) update(p >> i);
    }

    void apply(int l, int r, const F& f) {
        assert(0 <= l and l <= r and r <= n);
        if (l == r) return;

        l += size;
        r += size;

        for (int i = log; i >= 1; i--) {
            if (((l >> i) << i) != l) push(l >> i);
            if (((r >> i) << i) != r) push((r - 1) >> i);
        }

        {
            int l2 = l, r2 = r;
            while (l < r) {
                if (l & 1) all_apply(l++, f);
                if (r & 1) all_apply(--r, f);
                l >>= 1;
                r >>= 1;
            }
            l = l2;
            r = r2;
        }

        for (int i = 1; i <= log; i++) {
            if (((l >> i) << i) != l) update(l >> i);
            if (((r >> i) << i) != r) update((r - 1) >> i);
        }
    }

    template <class G> int max_right(int l, G& g) {
        assert(0 <= l and l <= n);
        assert(g(MS::e()));
        if (l == n) return n;
        l += size;
        for (int i = log; i >= 1; i--) push(l >> i);
        S sm = MS::e();
        do {
            while ((l & 1) == 0) l >>= 1;
            if (!g(MS::op(sm, d[l]))) {
                while (l < size) {
                    push(l);
                    l <<= 1;
                    if (g(MS::op(sm, d[l]))) {
                        sm = MS::op(sm, d[l]);
                        l++;
                    }
                }
                return l - size;
            }
            sm = MS::op(sm, d[l]);
            l++;
        } while ((l & -l) != l);
        return n;
    }

    template <class G> int min_left(int r, G& g) {
        assert(0 <= r and r <= n);
        assert(g(MS::e()));
        if (r == 0) return 0;
        r += size;
        for (int i = log; i >= 1; i--) push((r - 1) >> i);
        S sm = MS::e();
        do {
            r--;
            while (r > 1 and (r & 1)) r >>= 1;
            if (!g(MS::op(d[r], sm))) {
                while (r < size) {
                    push(r);
                    r = (r << 1) | 1;
                    if (g(MS::op(d[r], sm))) {
                        sm = MS::op(d[r], sm);
                        r--;
                    }
                }
                return r + 1 - size;
            }
            sm = MS::op(d[r], sm);
        } while ((r & -r) != r);
        return 0;
    }

   private:
    int n, log, size;
    std::vector<S> d;
    std::vector<F> lz;
    inline void update(int k) { d[k] = MS::op(d[k << 1], d[(k << 1) | 1]); }
    void all_apply(int k, const F& f) {
        d[k] = MSF::mapping(f, d[k]);
        if (k < size) lz[k] = MF::composition(f, lz[k]);
    }
    void push(int k) {
        all_apply(k << 1, lz[k]);
        all_apply((k << 1) | 1, lz[k]);
        lz[k] = MF::id();
    }
};
#line 2 "math/static_modint.hpp"

#line 4 "math/static_modint.hpp"

// constexpr ... for constexpr bool prime()
template <int m> struct StaticModint {
    using mint = StaticModint;
    unsigned int _v;

    static constexpr int mod() { return m; }
    static constexpr unsigned int umod() { return m; }

    constexpr StaticModint() : _v(0) {}

    template <class T> constexpr StaticModint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }

    constexpr unsigned int val() const { return _v; }

    constexpr mint &operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    constexpr mint &operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    constexpr mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    constexpr mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    constexpr mint &operator+=(const mint &rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    constexpr mint &operator-=(const mint &rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    constexpr mint &operator*=(const mint &rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    constexpr mint &operator/=(const mint &rhs) { return (*this *= rhs.inv()); }

    constexpr mint operator+() const { return *this; }
    constexpr mint operator-() const { return mint() - *this; }

    constexpr mint pow(long long n) const {
        assert(n >= 0);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }

    constexpr mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend constexpr mint operator+(const mint &lhs, const mint &rhs) { return mint(lhs) += rhs; }
    friend constexpr mint operator-(const mint &lhs, const mint &rhs) { return mint(lhs) -= rhs; }
    friend constexpr mint operator*(const mint &lhs, const mint &rhs) { return mint(lhs) *= rhs; }
    friend constexpr mint operator/(const mint &lhs, const mint &rhs) { return mint(lhs) /= rhs; }
    friend constexpr bool operator==(const mint &lhs, const mint &rhs) { return lhs._v == rhs._v; }
    friend constexpr bool operator!=(const mint &lhs, const mint &rhs) { return lhs._v != rhs._v; }
    friend std::ostream &operator<<(std::ostream &os, const mint &v) { return os << v.val(); }

    static constexpr bool prime = []() -> bool {
        if (m == 1) return false;
        if (m == 2 || m == 7 || m == 61) return true;
        if (m % 2 == 0) return false;
        unsigned int d = m - 1;
        while (d % 2 == 0) d /= 2;
        for (unsigned int a : {2, 7, 61}) {
            unsigned int t = d;
            mint y = mint(a).pow(t);
            while (t != m - 1 and y != 1 and y != m - 1) {
                y *= y;
                t <<= 1;
            }
            if (y != m - 1 and t % 2 == 0) {
                return false;
            }
        }
        return true;
    }();
    static constexpr std::pair<int, int> inv_gcd(int a, int b) {
        if (a == 0) return {b, 0};
        int s = b, t = a, m0 = 0, m1 = 1;
        while (t) {
            const int u = s / t;
            s -= t * u;
            m0 -= m1 * u;
            std::swap(s, t);
            std::swap(m0, m1);
        }
        if (m0 < 0) m0 += b / s;
        return {s, m0};
    }
};
using mint107 = StaticModint<1000000007>;
using mint998 = StaticModint<998244353>;
#line 8 "verify/lc_data_structure/lc_range_affine_range_sum.test.cpp"
using mint = mint998;

int main() {
    int N, Q;
    std::cin >> N >> Q;
    std::vector<std::pair<mint, int>> A(N);
    for (int i = 0; i < N; i++) {
        int a;
        std::cin >> a;
        A[i] = {mint(a), 1};
    }
    LazySegmentTree<MonoidSumSizeAffine<mint>> seg(A);
    while (Q--) {
        int t;
        std::cin >> t;
        if (t == 0) {
            int l, r, b, c;
            std::cin >> l >> r >> b >> c;
            seg.apply(l, r, {b, c});
        } else {
            int l, r;
            std::cin >> l >> r;
            std::cout << seg.prod(l, r).first.val() << '\n';
        }
    }
    return 0;
}
Back to top page