This documentation is automatically generated by online-judge-tools/verification-helper
View the Project on GitHub ruthen71/rcpl
#define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_E" #include <iostream> #include "graph/read_graph.hpp" #include "graph/heavy_light_decomposition.hpp" #include "data_structure/lazy_segment_tree.hpp" #include "algebra/monoid_s_f/monoid_sum_size_add.hpp" int main() { int N; std::cin >> N; Graph<int> g(N, false); for (int i = 0; i < N; i++) { int K; std::cin >> K; for (int j = 0; j < K; j++) { int c; std::cin >> c; g.add_edge(i, c, 1); } } const int root = N / 2; // verify のために適当に決める HeavyLightDecomposition hld(g, root); std::vector<std::pair<long long, int>> segi(N - 1, {0, 1}); LazySegmentTree<MonoidSumSizeAdd<long long>> seg(segi); int Q; std::cin >> Q; for (int i = 0; i < Q; i++) { int type; std::cin >> type; if (type == 0) { int v, w; std::cin >> v >> w; auto intervals = hld.path_query(0, v, true); for (auto&& [l, r] : intervals) { seg.apply(l, r, w); } } else { int v; std::cin >> v; auto intervals = hld.path_query(0, v, true); auto res = MonoidSumSizeAdd<long long>::MS::e(); for (auto&& [l, r] : intervals) { res = MonoidSumSizeAdd<long long>::MS::op(res, seg.prod(l, r)); } std::cout << res.first << '\n'; } } return 0; }
#line 1 "verify/graph/heavy_light_decomposition_1.test.cpp" #define PROBLEM "https://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_5_E" #include <iostream> #line 2 "graph/read_graph.hpp" #line 2 "graph/graph_template.hpp" #include <vector> #include <cassert> template <class T> struct Edge { int from, to; T cost; int id; Edge() = default; Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {} friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; } friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) { // output format: {id: cost(from, to) = cost} return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}"; } }; template <class T> using Edges = std::vector<Edge<T>>; template <class T> struct Graph { struct EdgeIterators { public: using Iterator = typename std::vector<Edge<T>>::iterator; EdgeIterators() = default; EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {} Iterator begin() const { return begit; } Iterator end() const { return endit; } size_t size() const { return std::distance(begit, endit); } Edge<T>& operator[](int i) const { return begit[i]; } private: Iterator begit, endit; }; int n, m; bool is_build, is_directed; std::vector<Edge<T>> edges; // CSR (Compressed Row Storage) 形式用 std::vector<int> start; std::vector<Edge<T>> csr_edges; Graph() = default; Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {} // 辺を追加し, その辺が何番目に追加されたかを返す int add_edge(const int from, const int to, const T cost = T(1), int id = -1) { assert(!is_build); assert(0 <= from and from < n); assert(0 <= to and to < n); if (id == -1) id = m; edges.emplace_back(from, to, cost, id); return m++; } // CSR 形式でグラフを構築 void build() { assert(!is_build); for (auto&& e : edges) { start[e.from + 1]++; if (!is_directed) start[e.to + 1]++; } for (int v = 0; v < n; v++) start[v + 1] += start[v]; auto counter = start; csr_edges.resize(start.back() + 1); for (auto&& e : edges) { csr_edges[counter[e.from]++] = e; if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id); } is_build = true; } EdgeIterators operator[](int i) { if (!is_build) build(); return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]); } size_t size() const { return (size_t)(n); } friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) { os << "["; for (int i = 0; i < (int)(g.size()); i++) { os << "["; for (int j = 0; j < (int)(g[i].size()); j++) { os << g[i][j]; if (j + 1 != (int)(g[i].size())) os << ", "; } os << "]"; if (i + 1 != (int)(g.size())) os << ", "; } return os << "]"; } }; #line 4 "graph/read_graph.hpp" template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n, directed); for (int i = 0; i < m; i++) { int a, b; std::cin >> a >> b; a -= offset, b -= offset; T c = 1; if (weight) std::cin >> c; g.add_edge(a, b, c); } g.build(); return g; } template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) { Graph<T> g(n, directed); for (int i = 1; i < n; i++) { int p; std::cin >> p; p -= offset; T c = 1; if (weight) std::cin >> c; g.add_edge(p, i, c); } g.build(); return g; } #line 2 "graph/heavy_light_decomposition.hpp" #line 4 "graph/heavy_light_decomposition.hpp" // Heavy-Light Decomposition template <class T> struct HeavyLightDecomposition { int n; // dfs_size std::vector<int> subsize; // subsize[v] = v を根とする部分木のサイズ std::vector<int> depth; // depth[v] = v の深さ std::vector<int> parent; // parent[v] = v の親の頂点番号 // dfs_hld std::vector<int> vertices; // Heavy-Edge から優先的に DFS したときの頂点の番号を並べたもの, n 要素 std::vector<int> edges; // Heavy-Edge から優先的に DFS したときの辺の番号を並べたもの, n - 1 要素 std::vector<int> pathtop; // pathtop[v] = v を含むパス上の祖先 std::vector<int> subbegin; // subbegin[v] = v を根とする部分木の頂点列の開始位置, vertices における v の登場位置 std::vector<int> subend; // subend[v] = v を根とする部分木の頂点列の終わり std::vector<int> eindex; // eindex[e] = edges における e の登場位置 // Graph<T> の辺の並べ替えを行うことに注意 HeavyLightDecomposition(Graph<T>& g, const int root = 0) : n((int)(g.size())), subsize(n, 1), depth(n, 0), parent(n, -1), pathtop(n, -1), subbegin(n, -1), subend(n, -1), eindex(n - 1, -1) { // 部分木のサイズを計算 auto dfs_size = [&](auto f, int cur, int par) -> void { parent[cur] = par; // 親方向への辺を末尾に移動 for (int i = 0; i < (int)(g[cur].size()); i++) { if (g[cur][i].to == par) { std::swap(g[cur][i], g[cur][(int)(g[cur].size()) - 1]); break; } } // 部分木のサイズが最大のものを先頭に移動 for (auto&& e : g[cur]) { if (e.to == par) continue; depth[e.to] = depth[cur] + 1; f(f, e.to, cur); subsize[cur] += subsize[e.to]; if (subsize[e.to] > subsize[g[cur][0].to]) { std::swap(e, g[cur][0]); } } }; dfs_size(dfs_size, root, -1); // 頂点を並べる vertices.reserve(n); edges.reserve(n - 1); auto dfs_hld = [&](auto f, int cur, int par, int top) -> void { pathtop[cur] = top; subbegin[cur] = (int)(vertices.size()); vertices.push_back(cur); for (auto&& e : g[cur]) { if (e.to == par) continue; eindex[e.id] = (int)(edges.size()); edges.push_back(e.id); // top は heavy-edge に対してのみ引き継がれる f(f, e.to, cur, (e.to == g[cur][0].to ? top : e.to)); } subend[cur] = (int)(vertices.size()); }; dfs_hld(dfs_hld, root, -1, root); } int lca(int u, int v) { // 同じパスまで上がる while (pathtop[u] != pathtop[v]) { if (subbegin[u] > subbegin[v]) { u = parent[pathtop[u]]; } else { v = parent[pathtop[v]]; } } if (subbegin[u] > subbegin[v]) std::swap(u, v); return u; } // u - v パスに対応する区間 // is_edges = true なら edges に対応する区間, false なら vertices に対応する区間 std::vector<std::pair<int, int>> path_query(int u, int v, const bool is_edges) { std::vector<std::pair<int, int>> res; while (pathtop[u] != pathtop[v]) { if (subbegin[u] > subbegin[v]) std::swap(u, v); // subbegin[u] <= subbegin[v] if (is_edges) { // edges に対応する区間なので pathtop[u] から parent[pathtop[u]] に行く辺も区間に加える res.emplace_back(subbegin[pathtop[v]] - 1, subbegin[v]); } else { res.emplace_back(subbegin[pathtop[v]], subbegin[v] + 1); } v = parent[pathtop[v]]; } if (subbegin[u] > subbegin[v]) std::swap(u, v); if (is_edges) { res.emplace_back(subbegin[u], subbegin[v]); } else { res.emplace_back(subbegin[u], subbegin[v] + 1); } return res; } // u を根とする部分木に対応する区間 // is_edges = true なら edges に対応する区間, false なら vertices に対応する区間 std::pair<int, int> subtree_query(int u, const bool is_edges) { if (is_edges) { return {subbegin[u], subend[u] - 1}; } else { return {subbegin[u], subend[u]}; } } }; #line 4 "data_structure/lazy_segment_tree.hpp" template <class MSF> struct LazySegmentTree { public: using S = typename MSF::S; using F = typename MSF::F; using MS = typename MSF::MS; using MF = typename MSF::MF; LazySegmentTree() : LazySegmentTree(0) {} LazySegmentTree(int n) : LazySegmentTree(std::vector<S>(n, MS::e())) {} LazySegmentTree(const std::vector<S>& v) : n((int)(v.size())) { log = 0; while ((1U << log) < (unsigned int)(n)) log++; size = 1 << log; d = std::vector<S>(size << 1, MS::e()); lz = std::vector<F>(size, MF::id()); for (int i = 0; i < n; i++) d[i + size] = v[i]; for (int i = size - 1; i >= 1; i--) { update(i); } } void set(int p, const S& x) { assert(0 <= p and p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = x; for (int i = 1; i <= log; i++) update(p >> i); } void chset(int p, const S& x) { assert(0 <= p and p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = MS::op(d[p], x); for (int i = 1; i <= log; i++) update(p >> i); } S operator[](int p) { assert(0 <= p and p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S get(int p) { assert(0 <= p and p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); return d[p]; } S prod(int l, int r) { assert(0 <= l and l <= r and r <= n); if (l == r) return MS::e(); l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } S sml = MS::e(), smr = MS::e(); while (l < r) { if (l & 1) sml = MS::op(sml, d[l++]); if (r & 1) smr = MS::op(d[--r], smr); l >>= 1; r >>= 1; } return MS::op(sml, smr); } S all_prod() { return d[1]; } void apply(int p, const F& f) { assert(0 <= p and p < n); p += size; for (int i = log; i >= 1; i--) push(p >> i); d[p] = MSF::mapping(f, d[p]); for (int i = 1; i <= log; i++) update(p >> i); } void apply(int l, int r, const F& f) { assert(0 <= l and l <= r and r <= n); if (l == r) return; l += size; r += size; for (int i = log; i >= 1; i--) { if (((l >> i) << i) != l) push(l >> i); if (((r >> i) << i) != r) push((r - 1) >> i); } { int l2 = l, r2 = r; while (l < r) { if (l & 1) all_apply(l++, f); if (r & 1) all_apply(--r, f); l >>= 1; r >>= 1; } l = l2; r = r2; } for (int i = 1; i <= log; i++) { if (((l >> i) << i) != l) update(l >> i); if (((r >> i) << i) != r) update((r - 1) >> i); } } template <class G> int max_right(int l, G& g) { assert(0 <= l and l <= n); assert(g(MS::e())); if (l == n) return n; l += size; for (int i = log; i >= 1; i--) push(l >> i); S sm = MS::e(); do { while ((l & 1) == 0) l >>= 1; if (!g(MS::op(sm, d[l]))) { while (l < size) { push(l); l <<= 1; if (g(MS::op(sm, d[l]))) { sm = MS::op(sm, d[l]); l++; } } return l - size; } sm = MS::op(sm, d[l]); l++; } while ((l & -l) != l); return n; } template <class G> int min_left(int r, G& g) { assert(0 <= r and r <= n); assert(g(MS::e())); if (r == 0) return 0; r += size; for (int i = log; i >= 1; i--) push((r - 1) >> i); S sm = MS::e(); do { r--; while (r > 1 and (r & 1)) r >>= 1; if (!g(MS::op(d[r], sm))) { while (r < size) { push(r); r = (r << 1) | 1; if (g(MS::op(d[r], sm))) { sm = MS::op(d[r], sm); r--; } } return r + 1 - size; } sm = MS::op(d[r], sm); } while ((r & -r) != r); return 0; } std::vector<S> make_vector() { std::vector<S> vec(n); for (int i = 0; i < n; i++) vec[i] = get(i); return vec; } private: int n, log, size; std::vector<S> d; std::vector<F> lz; inline void update(int k) { d[k] = MS::op(d[k << 1], d[(k << 1) | 1]); } void all_apply(int k, const F& f) { d[k] = MSF::mapping(f, d[k]); if (k < size) lz[k] = MF::composition(f, lz[k]); } void push(int k) { all_apply(k << 1, lz[k]); all_apply((k << 1) | 1, lz[k]); lz[k] = MF::id(); } }; #line 2 "algebra/monoid_s/monoid_sum_size.hpp" // MS template <class T> struct MonoidSumSize { using S = std::pair<T, int>; static constexpr S op(S a, S b) { return {a.first + b.first, a.second + b.second}; } static constexpr S e() { return {T(0), 0}; } }; #line 2 "algebra/monoid_f/monoid_add.hpp" // MF template <class T> struct MonoidAdd { using F = T; static constexpr F composition(F f, F g) { return f + g; } static constexpr F id() { return T(0); } }; #line 4 "algebra/monoid_s_f/monoid_sum_size_add.hpp" // MSF template <class T> struct MonoidSumSizeAdd { using MS = MonoidSumSize<T>; using MF = MonoidAdd<T>; using S = typename MS::S; using F = typename MF::F; static constexpr S mapping(F f, S x) { return {x.first + f * x.second, x.second}; } }; #line 9 "verify/graph/heavy_light_decomposition_1.test.cpp" int main() { int N; std::cin >> N; Graph<int> g(N, false); for (int i = 0; i < N; i++) { int K; std::cin >> K; for (int j = 0; j < K; j++) { int c; std::cin >> c; g.add_edge(i, c, 1); } } const int root = N / 2; // verify のために適当に決める HeavyLightDecomposition hld(g, root); std::vector<std::pair<long long, int>> segi(N - 1, {0, 1}); LazySegmentTree<MonoidSumSizeAdd<long long>> seg(segi); int Q; std::cin >> Q; for (int i = 0; i < Q; i++) { int type; std::cin >> type; if (type == 0) { int v, w; std::cin >> v >> w; auto intervals = hld.path_query(0, v, true); for (auto&& [l, r] : intervals) { seg.apply(l, r, w); } } else { int v; std::cin >> v; auto intervals = hld.path_query(0, v, true); auto res = MonoidSumSizeAdd<long long>::MS::e(); for (auto&& [l, r] : intervals) { res = MonoidSumSizeAdd<long long>::MS::op(res, seg.prod(l, r)); } std::cout << res.first << '\n'; } } return 0; }