This documentation is automatically generated by online-judge-tools/verification-helper
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_path_sum"
#include <iostream>
#include "graph/read_graph.hpp"
#include "graph/heavy_light_decomposition.hpp"
#include "data_structure/segment_tree.hpp"
#include "algebra/monoid_s/monoid_sum.hpp"
int main() {
int N, Q;
std::cin >> N >> Q;
std::vector<long long> a(N);
for (int i = 0; i < N; i++) std::cin >> a[i];
auto g = read_graph<long long>(N, N - 1, false, false, 0);
const int root = N / 2; // verify のために適当に決める
HeavyLightDecomposition hld(g, root);
std::vector<long long> segi(N);
for (int i = 0; i < N; i++) segi[i] = a[hld.vertices[i]];
SegmentTree<MonoidSum<long long>> seg(segi);
for (int i = 0; i < Q; i++) {
int type;
std::cin >> type;
if (type == 0) {
int p, x;
std::cin >> p >> x;
seg.chset(hld.subbegin[p], x);
} else {
int u, v;
std::cin >> u >> v;
auto intervals = hld.path_query(u, v, false);
auto res = MonoidSum<long long>::e();
for (auto&& [l, r] : intervals) {
res = MonoidSum<long long>::op(res, seg.prod(l, r));
}
std::cout << res << '\n';
}
}
return 0;
}
#line 1 "verify/graph/heavy_light_decomposition_2.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/vertex_add_path_sum"
#include <iostream>
#line 2 "graph/read_graph.hpp"
#line 2 "graph/graph_template.hpp"
#include <vector>
#include <cassert>
template <class T> struct Edge {
int from, to;
T cost;
int id;
Edge() = default;
Edge(const int from, const int to, const T cost = T(1), const int id = -1) : from(from), to(to), cost(cost), id(id) {}
friend bool operator<(const Edge<T>& a, const Edge<T>& b) { return a.cost < b.cost; }
friend std::ostream& operator<<(std::ostream& os, const Edge<T>& e) {
// output format: {id: cost(from, to) = cost}
return os << "{" << e.id << ": cost(" << e.from << ", " << e.to << ") = " << e.cost << "}";
}
};
template <class T> using Edges = std::vector<Edge<T>>;
template <class T> struct Graph {
struct EdgeIterators {
public:
using Iterator = typename std::vector<Edge<T>>::iterator;
EdgeIterators() = default;
EdgeIterators(const Iterator& begit, const Iterator& endit) : begit(begit), endit(endit) {}
Iterator begin() const { return begit; }
Iterator end() const { return endit; }
size_t size() const { return std::distance(begit, endit); }
Edge<T>& operator[](int i) const { return begit[i]; }
private:
Iterator begit, endit;
};
int n, m;
bool is_build, is_directed;
std::vector<Edge<T>> edges;
// CSR (Compressed Row Storage) 形式用
std::vector<int> start;
std::vector<Edge<T>> csr_edges;
Graph() = default;
Graph(const int n, const bool directed = false) : n(n), m(0), is_build(false), is_directed(directed), start(n + 1, 0) {}
// 辺を追加し, その辺が何番目に追加されたかを返す
int add_edge(const int from, const int to, const T cost = T(1), int id = -1) {
assert(!is_build);
assert(0 <= from and from < n);
assert(0 <= to and to < n);
if (id == -1) id = m;
edges.emplace_back(from, to, cost, id);
return m++;
}
// CSR 形式でグラフを構築
void build() {
assert(!is_build);
for (auto&& e : edges) {
start[e.from + 1]++;
if (!is_directed) start[e.to + 1]++;
}
for (int v = 0; v < n; v++) start[v + 1] += start[v];
auto counter = start;
csr_edges.resize(start.back() + 1);
for (auto&& e : edges) {
csr_edges[counter[e.from]++] = e;
if (!is_directed) csr_edges[counter[e.to]++] = Edge(e.to, e.from, e.cost, e.id);
}
is_build = true;
}
EdgeIterators operator[](int i) {
if (!is_build) build();
return EdgeIterators(csr_edges.begin() + start[i], csr_edges.begin() + start[i + 1]);
}
size_t size() const { return (size_t)(n); }
friend std::ostream& operator<<(std::ostream& os, Graph<T>& g) {
os << "[";
for (int i = 0; i < (int)(g.size()); i++) {
os << "[";
for (int j = 0; j < (int)(g[i].size()); j++) {
os << g[i][j];
if (j + 1 != (int)(g[i].size())) os << ", ";
}
os << "]";
if (i + 1 != (int)(g.size())) os << ", ";
}
return os << "]";
}
};
#line 4 "graph/read_graph.hpp"
template <class T> Graph<T> read_graph(const int n, const int m, const bool weight = false, const bool directed = false, const int offset = 1) {
Graph<T> g(n, directed);
for (int i = 0; i < m; i++) {
int a, b;
std::cin >> a >> b;
a -= offset, b -= offset;
T c = 1;
if (weight) std::cin >> c;
g.add_edge(a, b, c);
}
g.build();
return g;
}
template <class T> Graph<T> read_parent(const int n, const bool weight = false, const bool directed = false, const int offset = 1) {
Graph<T> g(n, directed);
for (int i = 1; i < n; i++) {
int p;
std::cin >> p;
p -= offset;
T c = 1;
if (weight) std::cin >> c;
g.add_edge(p, i, c);
}
g.build();
return g;
}
#line 2 "graph/heavy_light_decomposition.hpp"
#line 4 "graph/heavy_light_decomposition.hpp"
// Heavy-Light Decomposition
template <class T> struct HeavyLightDecomposition {
int n;
// dfs_size
std::vector<int> subsize; // subsize[v] = v を根とする部分木のサイズ
std::vector<int> depth; // depth[v] = v の深さ
std::vector<int> parent; // parent[v] = v の親の頂点番号
// dfs_hld
std::vector<int> vertices; // Heavy-Edge から優先的に DFS したときの頂点の番号を並べたもの, n 要素
std::vector<int> edges; // Heavy-Edge から優先的に DFS したときの辺の番号を並べたもの, n - 1 要素
std::vector<int> pathtop; // pathtop[v] = v を含むパス上の祖先
std::vector<int> subbegin; // subbegin[v] = v を根とする部分木の頂点列の開始位置, vertices における v の登場位置
std::vector<int> subend; // subend[v] = v を根とする部分木の頂点列の終わり
std::vector<int> eindex; // eindex[e] = edges における e の登場位置
// Graph<T> の辺の並べ替えを行うことに注意
HeavyLightDecomposition(Graph<T>& g, const int root = 0) : n((int)(g.size())), subsize(n, 1), depth(n, 0), parent(n, -1), pathtop(n, -1), subbegin(n, -1), subend(n, -1), eindex(n - 1, -1) {
// 部分木のサイズを計算
auto dfs_size = [&](auto f, int cur, int par) -> void {
parent[cur] = par;
// 親方向への辺を末尾に移動
for (int i = 0; i < (int)(g[cur].size()); i++) {
if (g[cur][i].to == par) {
std::swap(g[cur][i], g[cur][(int)(g[cur].size()) - 1]);
break;
}
}
// 部分木のサイズが最大のものを先頭に移動
for (auto&& e : g[cur]) {
if (e.to == par) continue;
depth[e.to] = depth[cur] + 1;
f(f, e.to, cur);
subsize[cur] += subsize[e.to];
if (subsize[e.to] > subsize[g[cur][0].to]) {
std::swap(e, g[cur][0]);
}
}
};
dfs_size(dfs_size, root, -1);
// 頂点を並べる
vertices.reserve(n);
edges.reserve(n - 1);
auto dfs_hld = [&](auto f, int cur, int par, int top) -> void {
pathtop[cur] = top;
subbegin[cur] = (int)(vertices.size());
vertices.push_back(cur);
for (auto&& e : g[cur]) {
if (e.to == par) continue;
eindex[e.id] = (int)(edges.size());
edges.push_back(e.id);
// top は heavy-edge に対してのみ引き継がれる
f(f, e.to, cur, (e.to == g[cur][0].to ? top : e.to));
}
subend[cur] = (int)(vertices.size());
};
dfs_hld(dfs_hld, root, -1, root);
}
int lca(int u, int v) {
// 同じパスまで上がる
while (pathtop[u] != pathtop[v]) {
if (subbegin[u] > subbegin[v]) {
u = parent[pathtop[u]];
} else {
v = parent[pathtop[v]];
}
}
if (subbegin[u] > subbegin[v]) std::swap(u, v);
return u;
}
// u - v パスに対応する区間
// is_edges = true なら edges に対応する区間, false なら vertices に対応する区間
std::vector<std::pair<int, int>> path_query(int u, int v, const bool is_edges) {
std::vector<std::pair<int, int>> res;
while (pathtop[u] != pathtop[v]) {
if (subbegin[u] > subbegin[v]) std::swap(u, v);
// subbegin[u] <= subbegin[v]
if (is_edges) {
// edges に対応する区間なので pathtop[u] から parent[pathtop[u]] に行く辺も区間に加える
res.emplace_back(subbegin[pathtop[v]] - 1, subbegin[v]);
} else {
res.emplace_back(subbegin[pathtop[v]], subbegin[v] + 1);
}
v = parent[pathtop[v]];
}
if (subbegin[u] > subbegin[v]) std::swap(u, v);
if (is_edges) {
res.emplace_back(subbegin[u], subbegin[v]);
} else {
res.emplace_back(subbegin[u], subbegin[v] + 1);
}
return res;
}
// u を根とする部分木に対応する区間
// is_edges = true なら edges に対応する区間, false なら vertices に対応する区間
std::pair<int, int> subtree_query(int u, const bool is_edges) {
if (is_edges) {
return {subbegin[u], subend[u] - 1};
} else {
return {subbegin[u], subend[u]};
}
}
};
#line 4 "data_structure/segment_tree.hpp"
template <class MS> struct SegmentTree {
public:
using S = typename MS::S;
SegmentTree() : SegmentTree(0) {}
SegmentTree(int n) : SegmentTree(std::vector<S>(n, MS::e())) {}
SegmentTree(const std::vector<S>& v) : n((int)(v.size())) {
log = 0;
while ((1U << log) < (unsigned int)(n)) log++;
size = 1 << log;
d = std::vector<S>(size << 1, MS::e());
for (int i = 0; i < n; i++) d[i + size] = v[i];
for (int i = size - 1; i >= 1; i--) {
update(i);
}
}
void set(int p, const S& x) {
assert(0 <= p and p < n);
p += size;
d[p] = x;
for (int i = 1; i <= log; i++) update(p >> i);
}
void chset(int p, const S& x) {
assert(0 <= p and p < n);
p += size;
d[p] = MS::op(d[p], x);
for (int i = 1; i <= log; i++) update(p >> i);
}
S operator[](int p) const {
assert(0 <= p and p < n);
return d[p + size];
}
S get(int p) const {
assert(0 <= p && p < n);
return d[p + size];
}
S prod(int l, int r) const {
assert(0 <= l and l <= r and r <= n);
S sml = MS::e(), smr = MS::e();
l += size;
r += size;
while (l < r) {
if (l & 1) sml = MS::op(sml, d[l++]);
if (r & 1) smr = MS::op(d[--r], smr);
l >>= 1;
r >>= 1;
}
return MS::op(sml, smr);
}
S all_prod() const { return d[1]; }
template <class G> int max_right(int l, G& g) const {
assert(0 <= l and l <= n);
assert(g(MS::e()));
if (l == n) return n;
l += size;
S sm = MS::e();
do {
while ((l & 1) == 0) l >>= 1;
if (!g(MS::op(sm, d[l]))) {
while (l < size) {
l <<= 1;
if (g(MS::op(sm, d[l]))) {
sm = MS::op(sm, d[l]);
l++;
}
}
return l - size;
}
sm = MS::op(sm, d[l]);
l++;
} while ((l & -l) != l);
return n;
}
template <class G> int min_left(int r, G& g) const {
assert(0 <= r and r <= n);
assert(g(MS::e()));
if (r == 0) return 0;
r += size;
S sm = MS::e();
do {
r--;
while (r > 1 and (r & 1)) r >>= 1;
if (!g(MS::op(d[r], sm))) {
while (r < size) {
r = (r << 1) | 1;
if (g(MS::op(d[r], sm))) {
sm = MS::op(d[r], sm);
r--;
}
}
return r + 1 - size;
}
sm = MS::op(d[r], sm);
} while ((r & -r) != r);
return 0;
}
std::vector<S> make_vector() {
std::vector<S> vec(n);
for (int i = 0; i < n; i++) vec[i] = get(i);
return vec;
}
private:
int n, log, size;
std::vector<S> d;
inline void update(int k) { d[k] = MS::op(d[k << 1], d[(k << 1) | 1]); }
};
#line 2 "algebra/monoid_s/monoid_sum.hpp"
// MS
template <class T> struct MonoidSum {
using S = T;
static constexpr S op(S a, S b) { return a + b; }
static constexpr S e() { return T(0); }
};
#line 9 "verify/graph/heavy_light_decomposition_2.test.cpp"
int main() {
int N, Q;
std::cin >> N >> Q;
std::vector<long long> a(N);
for (int i = 0; i < N; i++) std::cin >> a[i];
auto g = read_graph<long long>(N, N - 1, false, false, 0);
const int root = N / 2; // verify のために適当に決める
HeavyLightDecomposition hld(g, root);
std::vector<long long> segi(N);
for (int i = 0; i < N; i++) segi[i] = a[hld.vertices[i]];
SegmentTree<MonoidSum<long long>> seg(segi);
for (int i = 0; i < Q; i++) {
int type;
std::cin >> type;
if (type == 0) {
int p, x;
std::cin >> p >> x;
seg.chset(hld.subbegin[p], x);
} else {
int u, v;
std::cin >> u >> v;
auto intervals = hld.path_query(u, v, false);
auto res = MonoidSum<long long>::e();
for (auto&& [l, r] : intervals) {
res = MonoidSum<long long>::op(res, seg.prod(l, r));
}
std::cout << res << '\n';
}
}
return 0;
}